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HIGH-PERFORMANCE INFORMATION TECHNOLOGIES
TO STUDY FILTRATION PROCESSES IN MEDIA WITH VARIABLE-SIZED
NANOPOROUS PARTICLES

This study presents mathematical solutions for the pressure distribution and consolidation coefficient within a
nanoporous material characterized by varying compressibility and permeability properties. The mathematical model of
nanoporous filtration systems is founded on a phenomenological model developed by the authors. This model encapsulates
the intricate dynamics of a two-phase and two-level transport process, known as nanofiltration-consolidation. To solve
the defined mathematical problem analytically, the operational Heavisides method where employed in composition
with Laplace integral and Fourier integral transformations. The application of the finite integral cos Fourier transform
allowed to get analytical representations for pressure profiles both in interparticle and intraparticle spaces as a function
of particle position within media, particles radius, and total time.

To advance understanding of complex nanofiltration processes occurring within media containing nanoporous
particles of varied sizes, a specialized software complex has been engineered. The adherence to software development best
practices has rendered the software design highly adaptable, allowing for effortless future extensions and improvements.
This, in turn, empowers the software with the capacity to seamlessly incorporate new features and enhancements.

As a part the simulation phase, a constructed software suite was used to explore the internal kinetics of filtration
processes within multidimensional nanoporous particle media. Numerical modelization results reveal insight into internal
processes, such as pressure drop within the intraparticle network, leading to a notable deceleration in nanofiltration
kinetics, specifically in relation to nanoporous particles of differing sizes. Among them, the consolidation coefficients
indicate that particles of the second-type have a less destroyed cellular structure compared to particles of the first-type.
The simulated profiles illustrate that liquid pressure experiences rapid drops at the surface of the particles in contrast
to the sections closer to the center of the particles. Furthermore, a more substantial overall decline occurs as vary-sized
particles approach the media edge. In the other hand, a noticeable slowing down of the liquid pressure drop can be
observed in the micropores of the particles.
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TepHomiIbCHKHMI HAIIIOHATBHUI TEXHIYHUN YHIBepcuTeT iMeHi [Bana [Tymros

BUCOKOIIPOJAYKTHUBHI IH®OOPMAIIMHI TEXHOJIOI'TI
JIJIA JOCIIIKEHHS IMPOIIECIB ®LJIBTPALII B CEPEJJOBHIIIAX
I3 HAHOITOPUCTUMHU YACTUHKAMM PI3HOI'O PO3MIPY

B oocnioocenni npedcmagneno pose’si3ku Mamemamuyroi mooeni 0as po3nooinie mucky ma xoegiyicumy Kowu-
conioayii ecepeduni HAHONOPUCTNO20 MAMePIALy, WO XaApaKmMepusyemvcsa PisHUMU 61ACTHUBOCAMU CTHUCIUBOCT]
ma nponuknocmi. Mamemamuyuna mooensb inempayii 6 HAHONOPUCIOMY CEPedOsULYi 6A3YEMbCA HA PeHOMEHON0TUHil
Mmoderni, po3pobneniti asmopamu. L modens oxonuroe ckaaony OUHAMIKY 080(hazHo20 ma 080pPI6He8020 Npoyecy mpaH-
CnOpmy8aHHs, 8i00M020 AK HAHOQIIbMpayis-KoHconioayis. [ns 8i0OuyKaHHs po38 a3Ky NOCMABIeHoi MamemamudHol
3a0a4i AHANIMUYHO BUKOPUCOBYBABCS ONepayitinull memoo Xegicailoa 6 NOEOHAHHI 3 iHMeZPaNbHUMU NEPEmBopeHHAMU
Jlannaca ma nepemeopennamu Pyp’e. 3acmocysanns CKiHueHHO20 iHmMe2paIbHo20 hepemeopenns Dyp’e cos 003601UN0
ompumamu aHarimuyHi npeocmasiientst Oas NPOQPiNie MUCKY K Y MINCHACMUHKOBOMY, MAK | GHYMPIUHbOYACIUHKOBOMY
npocmopax y u2naoi QyHKyii 6i0 NoNoNCeH A YACMUHKY 8 cepedosulyi, paoiyca YaCmMuHKU ma 3a2aibHo20 4acy.

s nokpawjenHs po3ymMiHHA CKAAOHUX Npoyecie HaHoQinempayii, wo 8i00y8arOmMucs 8 cepedosuliax HAaHONOPUc-
MUX YACMUHKU PI3HO20 PO3MIPY, OV6 po3pobienHull cneyianizoeanuti npocpamHuil. KoMniexc. JJompumants Haukpawux
NPAKMUK PO3POOKU NPOSPAMHO20 3abe3neyeHHs 3p00UI0 OU3aLH NPOSPAMHO20 3abe3neyenHs Oyixce a0anmueHUM, 00360-
JA0UU J1€2KO POZMUPIOBamu ma 600CKOHANI06aAMU 1020 3a nompebu. Lle, y ceoio uepzy, nadano npozpamuomy 3abesne-
YEHHIO MONCTUBICINL De3nepeutkooHO KII0YAmY HO8I YHKYIT ma 800CKOHANIEHHS.

Ak vacmuna emany mMoo0eno8anHs, po3poonenuii naKem npoepamHozo 3a0e3nedens UKOPUCmogy8ascs 0 00Ci-
0oicenHsi GHYMPIWHbOL KiHemuky npoyecie gitempayii 6 6a2amoguMIpHUX HaAHONOpucmux cepedosuujax. Pezynemamu
YUCENTbHO20 MOOETIOBAHHS 8IOKPUBAIOMb PO3YMIHHSA BHYMPIUWHIX Npoyecis, maxKux AK NaoiHHA MUCKY 6CepeOuHi mepexci
YACMUHOK, WO NPU3E00UMb 00 NOMIMHO20 YNOBIIbHEHHS KIHeMUKU HAHOQinbmpayii, 0cobaueo ujo0o HaAaHONOPUCMUX HdC-
MUHOK PI3H020 po3mipy. 30Kpema, Koediyicnmu KOHconioayii 6kazyioms w0 YacCmMuHKU Opy2020 MUny Maioms MeHu 3pyii-
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HOBAHY KIIMUHHY CIPYKMYPY V NOPIGHAHHI 3 YACMUHKAMU Nepuio2o muny. 3mMooenvo8ani npo@ini noKazyoms, ujo muck
PIOUHU WBUOKO NAOAE HA NOBEPXHI HACTMUHOK HA 8i0OMIHY 8i0 OLIAHOK, PO3MAUL08AHUX OnudHCHe 00 yeHmpy yacmunok. Kpiu
moeo, binbu icmommue 3a2anbHe 3HUNHCEHHS 8I00YBAEMbCA, KOIU YACMUHKU PI3HO20 PO3MIDY HAOIUNCAIOMbCA 00 Kparo cepe-
dosuwa. 3 iHuto02o 60Ky, 6 MIKDONOPAX YACMUHOK MOJNCHA CROCMEPI2AmU NOMIMHE YNOGLIbHEHHS. NAOIHHSL MUCKY PIOUHLL.

Kniouosi cnosa: npoyecu ginempayii, yucenvhe MoO0eno8anis, NapaietbHi 00UUCIenHtsl, cepedosua 3 HaAHONO-
PUCIMUMU YACTUHKAMU.

Introduction

In various domains such as environmental protection, emission reduction, medicine,
and the filtration of liquids or gases, the design of intricate systems and processes necessitates
the creation of high-performance information systems. These systems are crucial for conducting
research based on scientifically grounded mathematical models that provide a robust physical basis
for understanding the composition of system elements, their interconnections, and the parameters that
dictate their effectiveness and functionality.

The proposed information technology for the investigation of nanoporous filtration systems is
founded on a phenomenological model previously developed by the authors. This model encapsulates
the intricate dynamics of a two-phase and two-level transport process, known as “nanofiltration-
consolidation”, occurring within the system’s “interparticle space — nanoporous particles”. It
comprehensively addresses the complex interplay between the internal flow of adsorbed substances
from the nanopores of spherical particles and the mass flow of substances residing in the interparticle
space [1, 2].

Problem Formulation
The nanoporous medium is characterized as a multi-level porous system featuring networks for
swift fluid flows within both interparticle and intraparticle spaces. Within this context, we examine
nanoporous particles containing a liquid substance comprised of various chemical constituents.

b) particle 1 c) particle 2

R1>R2

a) layer

Fig. 1. Liqued flow interactions in a two-level nanopores system:
(1) — intraparticle space and (2) — intraparticle space spaces

These particles collectively constitute a nanoporous layer, which undergoes one-dimensional
compression (see Fig. 1). Substance flows intermingle across all the spaces under consideration. The
separation of nanoporous particles is facilitated by a porous membrane. Each layer of particles is
regarded as a two-pore medium.

In Figure 1, two levels of the elementary volume are depicted: Level 1(a) corresponds to
the system of macropores in the interparticle space, while Level 2 (b and c) pertains to the system
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of nanopores within intraparticle spaces. This second level encompasses two subspaces containing
particles of different sizes: intraparticle space 1, which consists of nanoporous particles with a radius
of at least R, and intraparticle space 2, encompassing nanoporous particles with a radius of at least
R, (where R, > R,).

Mathematical Model Definition

The intricate system of nanofiltration and nano diffusion within spaces containing nanoporous
particles of varying sizes is described by a mathematical model. This model considers specific physical
factors and feedback interactions, and it is expressed as a system of boundary value problems comprising
partial differential equations. These equations pertain to the three interconnected spaces defined in
relation to the liquid phase, encompassing the interparticle space and two intraparticle spaces.

Consolidation equation in interparticle space. To find the solution to the equation for layers
with variable-sized nanoporous particles in the domain D, ={(1,z):1>0, 0<z<Ah}

P 2
0 lg’z) =b OR 4280 J.P(t X, 2)dx, — Bz J.P(t X,,2)dx, (1)
with initial condition

P (t,2)] = Pe (2)

and boundary conditions

oP

P (1, =0, = _, =0 3
1( Z)|z—0 8z |th ( )

Consolidation equations for particle. To find the solutions of the equations for the nanoporous
particles (radius R)) in the domain

D, :{(t,xi,z):t>0, |x,|<R;, 0<z<h,i :2,3}

oP, PP~ =
Siop S0 =23, A, 4
o e J 4
with initial condition
E|t:0 ZPE(Z), i:253 (5)
and boundary conditions
oP,
o o0 =05 Bx,2), = P(12) (6)

J

Here: P, —liquid pressure in interparticle space, P,, P, —liquid pressure in intraparticle space 1
and intraparticle space 2 (interior of spherical particles of various size) in accordance, b —consolidation
coefficient in interparticle space, b,, b, — consolidation coefficients in intraparticle space for various
particles, B,, B, — elasticity factor of various particles, 4 — layer thickness, R, R, — radius of various
particles.
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Finding Analytical Solution
To solve the defined mathematical problem analytically, we employ the operational Heaviside’s
method, Laplace integral, and Fourier integral transformations. The application of the finite integral
Fourier transform (cos) is discussed in [3, 4].

F[P(t.x;.2)]=

P,(t, x;,z)cosn,, x,dx; = P, ( 7),

= '—;3’

P(1,%;,2)9(x;,m,, )dx;

St =

0 8 x,T]m o0
Fr,60)- 52 <r,z>(’—')2 B
mj:O “8(xj9nm )‘ 1 m=0
oP | fo'P
| 28] T2 (s, o = R 0 (17 R0,
where: 8(x,,, )= _2m 1 _0 tral functions and spectral
. j’nm/ COST]m/Xj, T]m/ 2R T, mj , 00 SpeC ral runctions an SpeC ra
J

numbers of the integral Fourier cos-transformation.
Consiquentionaly, solutions of the problems B, B, are obtained:

2 & (=D)" byt 2w fo b (f
Pz(t,x,z)zPE(z)Kzo(n—)e b, cosnmlx+F 0 - .[ b ' B (v,z)dzcosn, x, |x|<R
| my= m 1 m = 0
z (1) bt z ” 3,1
I@(t,x,z):PE(z)%z(n—)e 3, cosnm2x+%2( )" bn mlje b (1= )P,(t,z)dzcosn%x,\x\st (7)
2 my=0 my 3 m=0

By substituting the expressions from equation (7) into the consolidation equation (1), and through
a sequence of transformations, and subsequently applying the integral Laplace transform as outlined
in [3], and the finite integral Fourier transform (sin), the problem (1)—(3) is addressed.

" h
E[B (5.2)]=[ B (5.2)V (2.0,)dz =[ B (5,2)-sin,zdz = P.,(s)
) 0
X « V(Za}\‘) 200
p _S P (5) L &t) 2 s)sink,z = P,
)= 2R O o~ o
d*P (s .
F{ i )}—xil’l,n(s,z)

2n+1 _2n+1

where V(z,2,) = sin n — are the spectral functions and A, =
of integral Fourier sin- #ransformatlon

Applying the integral operator of the inverse integral Laplace transformation to expression (8)
we obtain in [5] and taking into account series [3] we finally obtain solution for pressure P,

P (s) :[blx" +s+Bls§x/§-th[\/bERl ]+B2 (1-@%&#{\/5&}]
Bl BZ(I_S) b, s 1
[ {2 e

After introducing the notation

n are the spectral numbers

1

(8)
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O(s.0") =5 +bA" +Bie f\/_th(( ]+B2 —¢) (\/_th(\r&J

and applying the integral operator of the inverse Laplace transformation, we obtain the formula for
making the transition to the original in equation (8):
h |2 R

-1 R B +
S N
—Rch |-—R

R
sh\/i

+P BZ(I_S)L— 1

£ A, sk” \/7Rch\/7

here L'is integral operator of inverse Laplce transformation and * is an operator of both functions
convolution. As follows, by making replacements iv/s =v and s = —v?, we obtain next equation:

Pl’n(t)zPE}%L{ ! ]+PE%L{¢ lk
s

o)

3
S~
|
*
&~

n n

)

2 2 \/F R \/7 VR2
vi—bA, —Bev—= R 1g \/E Bz(l—s)v R, \/E

And based on Heviside’s theorem one get the equation of back to original [4]:

]:0 (10)

'Lil 1 =

S+bA" + e \/_\f th[\/; ]JFBZ(]_S)\E\/E'M[\/ERZJ

st

‘ (11)
-3 ¢

-o;ﬂﬁb‘xuﬁl \/_f th[\/; j*Bz(l_g)fﬁ'm(\g&H

where v,,, j=1,0; n= 0,00 are roots of the transcendental equation above.

s=-v,

After transforming the denominator, expression (11) will have the final form:

V2t

j:11+(1)(\/jn)

Finally, the analytical solution fort P, has a form of equation:

https://doi.org/10.32782/mathematical-modelling/2023-6-2-15
126



ITPUKIIA/THI ITHNTAHHA MATEMATHYHOI' O MOJAEJIFOBAHHA T. 6, Ne 2, 2023

_ ) _
2 _Jn
1-e _
2
2 VYin
. K — b
2
2&&e 2 & 2 sini z
P(t,z)=P.— 1-pe— "
0D=Ry 2200 AR . 2
jn
by =
b
2 —e
_ﬂz(l_g)iz
R & 2
2 an
Hx — b,

The equation represent liquid pressure distribution in the interparticle space.

Vi j=1,00; n=0,00 are the roots of the transcendental equation (10).

(12)

2k +1 — . . . .
N = % k =0, are the roots of equation ch( fbiRl] =0, (s=in, i- imaginary unit),
1 2
(2k +1)x — : s ,
u, =——, k=0,0 are the roots of equation ck| |—R, |=0, (s=iu)
2R, b,
s = 2n+1

Numerical modelization and discussion

n =T are the spectral numbers of integral Fourier transformation (Sin-Fourier).

During the simulation phase, a dedicated software suite was created to explore the internal
kinetics of filtration processes within multidimensional nanoporous particle media. This software
complex was developed in adherence to modern software design principles and best practices in

software engineering [6, 7].

The simulation results of the filtration kinetics process are presented below. The simulations
employed the following parameters: h=0.01 m, R, =0.008 m, R, =0.004 m, b, = 107 m?/s, b, =2 107 m?s,
b, = 10* m%s, B, = 0.1, B, = 0.15, and & = 0.5. It was assumed in the simulations that the media under
investigation comprised two types of multidimensional nanoporous particles with distinct kinetic properties.

Pyi(t,z)
1.0

0.8

0.6

0.0 700 300

i 600 go0 1000

Fig. 2. Distribution of dimensionless pressure in interparticle space P (t,2):

1-2=0.052-72=03,3-72=05,4-72=0.7,5-72=1.0 (Z=z/h)
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Figure 2 presents pressure profile distributions within the interparticle space, denoted
as P (t, z), across various sections of nanoporous media. Five profiles were simulated, each
corresponding to different sections of the porous media. It’s essential to note that pressures in all these
layers initiate from a state of full saturation and gradually progress toward near-complete depletion.

It’s evident from the figures that the pressure profiles are not uniformly distributed. The most
significant pressure drop occurs at Z = 0.05, near the lower part of the filtration media. In contrast,
layers situated higher up maintain pressure for a more extended duration, signifying a higher level
of saturation in those regions.

Figure 3 illustrates dimensionless liquid pressure profiles within porous particles of the first
type, denoted as P,(t, X, z), as a function of time (t [s]). The temporal pressure profiles were simulated
for various layer sections, including Z = 1 (at the top of the layer), Z = 0.5, and Z = 0.25 (representing
middle sections of the layer), and Z = 0 (at the surface of the filter medium).

Fromthe provided images, itis evident that the liquid pressure is highest at the center of the particles
(X = 0.05) and decreases as it moves towards the liquid expulsion point on the particle surface
at X = 1. Notably, at the edge of the particles, the pressure in the micropores approaches the pressure
in the macropores, denoted as P.(t, z). Additionally, it’s noteworthy that the liquid pressure
experiences a more rapid decline on the particle’s surface (X = 1) compared to the middle sections
(X=0.4,0.6, 0.8) or the central axis of the particles (X = 0.05).

Pa(t,x,2) Pa(t,x,2)

0.5

0.6

0.4

0.z

500 500 THop 0.0 700 awn 600 800 1000

00 00 W,
Pi(t,x,2) Py(t,x,2)
1.0 1.0
0.8 1 0.8
5
5
0.6 3 0.6 3
2
0.4 1 1 0.4
0.2 {1 oz
0.0 700 00 500 800 1000 0.0 700 300 500 500 1000

Fig. 3. Distribution of dimensionless pressure in intraparticles space P_(1,X,2) in time (t [s]) for sections:
a) Z=0.05;b) Z=0.25;¢) Z=0.5;d) Z=1 (Z = z/h);
1-X=1.0;2-X=0.8;3-X=0.6;4-X=04;5-X=0.05 X=x/R))

The discrepancy in temporal pressure profiles becomes more pronounced for particles situated
at the top of the layer (Z = 0). However, even in sections near the central axis of the particles (X = 0),
the liquid pressure decreases rather swiftly.

In Figure 4, we depict the temporal profiles of dimensionless liquid pressure within porous
particles of the second type (small). Similar to the previous example, these temporal pressure profiles
were simulated for four distinct sections of the media layer: Z =1, 0.25, 0.5, and 0.05.
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Fig. 4. Distribution of dimensionless pressure in the intraparticles space P (t,X,2) in time (t [s])
for sections: a) Z =0.05; b) Z=0.25;¢) Z=0.5; d) Z=1 (Z = z/h);
1-X=1.0;2-X=08;3-X=0.6;4-X=04;5-X=0.05X=x,/R)

The consolidation coefficient for these second-type particles signifies a less disrupted cellular
structure compared to the first-type particles. As observed in the previous instance, the presented
profiles illustrate that liquid pressure experiences rapid drops at the surface of the particles (X =1) in
contrast to the sections closer to the center of the particles (X = 0.05). Furthermore, a more substantial
overall decline occurs as Z approaches 0. Nonetheless, it’s worth noting that a noticeable slowing
down of the liquid pressure drop can be observed in the micropores of the particles.

Conclusions

The mathematical solution has been constructed for the liquid pressure distribution and consolidation
coefficient in a real nanoporous material characterized by distinct compressibility and permeability
properties. These results indicate a deceleration in pressure drop within the intraparticle network
and a corresponding slowdown in nanofiltration kinetics for nanoporous particles of different sizes.

To facilitate the study of complex nanofiltration processes within media featuring various-sized
nanoporous particles, a specialized software complex was developed using cutting-edge science-
intensive information technologies, closely aligned with the described mathematical model. Key
objectives in designing this software complex included enabling rapid research into nanofiltration
processes for scientists, compatibility with modern platforms, high-performance numerical modeling,
and a user-friendly interface
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