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ANALYSIS OF INVOLUNTARY MOVEMENTS OF PATIENTS WITH TREMOR
SYMPTOMS UNDER THE INFLUENCE OF COGNITIVE INFLUENCES

This study introduces a cutting-edge digital approach to analyzing the relationship between involuntary movements
and brain activity in patients with neurological disorders associated with tremor, such as Parkinson's disease. The research
was conducted on real patients, offering a practical perspective on how cognitive influences impact motor control and
brain function. To achieve this, patients were asked to draw spirals on a Huion KAMVAS Pro 16 graphics tablet, a device
equipped with a touch-sensitive screen and stylus, allowing for precise tracking of movement. Simultaneously, their brain
activity was monitored using the NEUROCOM EEG system, with electrodes positioned on the posterior region of the
head-an area strongly involved in motor coordination. This dual setup ensured synchronized data collection of motor
performance and neural dynamics.

The primary goal of the study was to uncover connections between involuntary movements, observed as tremor-
induced irregularities in the spiral drawings, and specific patterns of brain activity recorded through EEG. By comparing
the data collected in medicated and unmedicated states, significant variations in tremor severity and brain function were
identified. Key regions of the brain involved in motor regulation were identified, shedding light on the mechanisms that
underlie tremor development and its modulation under different conditions.

This approach offers a groundbreaking perspective on the diagnosis and treatment of tremor-related conditions.
Unlike traditional methods, which often rely on subjective assessments and are limited in capturing real-time neural
activity, this method provides a more objective and detailed analysis of motor impairments. By integrating precise
movement data from the graphics tablet with neurophysiological signals from EEG, the study demonstrates the potential
for creating more effective, personalized treatment strategies for conditions like Parkinson s disease. The findings open
new avenues for leveraging digital tools in clinical research, enabling a deeper understanding of how motor and cognitive
processes interact in patients with tremor symptoms.
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TepHOMIINBECHKUIT HAIlIOHANBHUHN TeXHIYHHUNA yHiBepcuTeT iMeHi [BaHa [Tymros

AHAJII3 MUMOBIJIBHUX PYXIB ITAII€EHTIB 13 CUMIITOMAMMU TPEMOPY
I BINIMBOM KOTHITUBHUX BIIJIUBIB

Y oocniosicenni npeocmaeneno cywachuil yugposuil nioxio 00 aHANI3Y G3AEMO36 SI3KY MINC MUMOGLIbHUMU
pyxamu ma aKmueHiCmio MO3KY 6 NAYIEHMIB I3 HeBPONOIUHUMU PO3NA0AMU, NO8 SA3AHUMU 3 MPEMOPOM, SK-OM X60pooa
THapkincona. Hocniodcenns nposoounocs Ma pedairbHuX nayieHmax, wo 3abesneyye npakmudHuil nociao Ha me, AK
KOZHIMUBHI 6N1U8U Oi0Mb HA MOMOPHULL KOHMPOAb 1 QYHKYIt0 Mo3KY. Tlayienmam nponouyeanocs mamnosamu cnipaii
Ha epagiunomy ninanwemi Huion KAMVAS Pro 16, obraonaHoMy ceHCOpHUM eKPAHOM i CMUIYCOM OAf MOYHO20
siocmedicenns pyxie. Boonouac ix mo3xo8y akmuenicme peccmpysanu 3a oonomoeoro cucmemu NEUROCOM EEG i3
PO3MAULYBAHHAM eleKmpOoOi8 Y 3a0HIll HaCMUHL 20108U — OLISIHKU, MICHO N08 SI3aH0I 3 MOMOPHOI0 Koopounayicio. Taxuul
nioxio 3abe3neyus CUHXPOHIZ08aHU 30Ip OAHUX NPO MOMOPHY OLILHICHb MA HEUPOOUHAMIKY.

OcHogHamema 00CiOHCeHHA—BUABUMU B3AEMO38 AZKUMINC MUMOBITLHUMU PYXAMU, WO NPOAGTATUCA AK NOPYULEHHSL
8 MANIOHKY CNipai, CAPUYUHEHT mpemMopoM, i cneyuhiuHumMu namepHamu Mo3xk060i akmusrocmi, 3agikcosanumu Ha EET.
Topisutoouu dani nayicHmis y cmaui NPULMAHHA MeOUKameHmie ma 0e3 Hux, 0ai0 3M02y UABUMU 3HAYUHI GIOMIHHOCTMI
6 MANCKOCMI mpemopy ma QyHKyii Mo3Ky. Buznaueno xmovosi OLIsIHKU MO3KY, 3a/ydeHi 00 pe2ysyii MOMOpuKl, uo
00noMo2n0 2nubule 3p03yMImu MEXAHI3MU PO3BUMKY MPeMOpy Ma 1020 MOOUDIKayii 3a pisHUX yMOo8.

Leti nioxio npononye pegonioyitinuil RO21s10 HA OiA2HOCUKY Ma JIKY8AHHS CMAHIE, N08 S3aHux i3 mpemopom. Ha
BIOMIHY 810 MPAOUYILIHUX Memo0i8, AKI Yacmo 0a3yIombcs Ha YO EKMUBHUX OYIHKAX | MArOmMb 0OMedCeHHs 8 peecmpayii
HeUPOHHOI aKMUBHOCMI 8 PeanlbHOMY 4aci, yell Memoo HAode Oinbul 00 €KMueHUll i 0emanrbHull AHAN3 MOMOPHUX
nopyutens. Inmezpayis mouHux OGHUX NPO PyXu, OMPUMAHUX i3 2pApiuHO20 NAaHWema, ma Hetipoiziono2iuHux CUeHAI8
3 EET” 0emoncmpye nomenyian 0151 CME0PEeHHsL eqpeKMusHIuUX i NepCOHANI308AHUX CMPame2iil IIKY8AHHSL MAKUX CIAHIS,
sk xeopoba Ilapxincona. Ompumani pezyiomamu CMeOPIOIOMsb HOGI NePCHeKMUBU OJisi UKOPUCMAHHI YUDPOBUX
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IHCMpPYMeHmi8 y KITHIYHUX O0CIIONHCEHHSX, CNPUSIOYU 2IUOULOMY PO3YMIHHIO 83AEMOOL MOMOPHUX | KOZHIMUBHUX NPOYeCi8
Y nayieHmie i3 CUMRIMOMAMU MPEMOPY.

Kniouosi cnosa: mpemop, EEI, koeHimueni 6naueu, KOHmMpois pyxis, epaghiunuil nianuiem, eceHyianbHuti mpemop,
xeopoba [lapkincoua.

Introduction

Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorders, affecting
millions of individuals worldwide [2]. It is characterized by motor symptoms such as tremor, brady-
kinesia, rigidity, and postural instability, significantly impairing quality of life. Among these, tremor
is one of the most prominent and disruptive symptoms, often resistant to conventional medication
and challenging to manage effectively. Similarly, other neurological conditions such as Essential
Tremor and various movement disorders also present with tremor, further complicating diagnosis
and treatment.

Understanding the neurophysiological mechanisms underlying tremor is crucial for developing
effective interventions. Recent advances in non-invasive techniques, such as electroencephalography
(EEG), provide valuable insights into the brain's activity during motor tasks and have shown promise
in assessing tremor characteristics. The integration of EEG with precise motor recording tools, like
graphics tablets, allows researchers to capture real-time data on how the brain and motor systems
interact in patients with tremor [1].

This study aims to explore the relationship between limb tremor and brain activity by synchro-
nizing EEG data with motor performance during a controlled drawing task. By investigating how
cognitive influences and medication impact tremor severity and neural activity, this research seeks
to improve our understanding of tremor dynamics and support the development of more targeted and
effective treatment strategies for patients with movement disorders.

Analysis of Research on the Problem of Involuntary Movement Disorders

Emerging information technologies and advanced modeling methods have significantly
enhanced the development of computerized diagnostic systems, addressing critical health challenges
worldwide. These advancements are particularly impactful for neurological conditions characterized
by involuntary movement disorders (IMD), such as tremors and severe forms associated with dis-
eases like Alzheimer's and Parkinson’s. IMDs refer to involuntary oscillatory movements of specific
body parts (e.g., hands, speech organs, or eyes) caused by involuntary muscle contractions. Key indi-
cators of motor regulation disorders include increased movement amplitude, altered frequency, and
irregular oscillation patterns.

Analyzing these parameters is crucial for understanding how feedback dysfunction in the neural
nodes of the cerebral cortex influences cognitive motor control and for early detection of neuromotor
disorders. However, identifying IMDs remains challenging due to the limitations of existing diagnos-
tic methods, which suffer from low accuracy and a lack of mathematical and software tools to model
the feedback effects of cortical neural nodes on movement behavior.

Numerous studies, including those by researchers such as Legrand A.P., Vidailhet M. (ESPCI
Paris Tech, ICEM CNRS), Wang J.-S., Louis E., Haubenberger D., and Kalowitz D., have focused
on analyzing patient behavior and movement parameters. Most of these studies employed tradi-
tional digital signal processing techniques, such as Fourier transforms, to evaluate patient condi-
tions relative to normal baselines. However, these classical approaches are now considered inad-
equate for analyzing complex, unpredictable movement patterns often observed in patients with
severe tremors. Such methods fail to capture a significant portion of critical information about
the patient's condition, leading to reduced diagnostic quality and limited insights into real-world
scenarios.
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Research Objective

The objective of this study is to develop a hybrid analytical model capable of accurately iden-
tifying and analyzing involuntary movement disorders (IMD) by leveraging advanced digital and
neurophysiological data integration. The approach focuses on capturing and modeling the intricate
relationship between cognitive feedback signals from the cerebral cortex and motor trajectories.

This research utilized fragments of spiral-type trajectories generated by patients (referred to
as T-objects) using an electronic pen on an interactive graphics tablet. The captured motor data was
combined with synchronized EEG signals recorded from cortical regions responsible for motor con-
trol. A hybrid ANM model was employed to decompose the movement trajectories into segments,
allowing the identification of parameters associated with cognitive feedback effects reflected in the
EEG signal vector.

The goal of this model is to achieve detailed decomposition of the system while preserving its
integrity and interconnections-something that traditional signal processing methods fail to accom-
plish effectively. Classical approaches often lead to the loss of a significant portion of critical data,
limiting diagnostic accuracy and insights into the patient's real condition.

To enhance the model's performance, machine learning techniques are incorporated to refine
the weight coefficients of cognitive feedback signals recorded during the spiral trajectory test. This
ensures more accurate mapping of neural influences on motor behavior, enabling precise characteri-
zation of the patient’s condition and providing a foundation for improving diagnosis and treatment of
neurological disorders involving involuntary movements.

Development Methodology

The proposed methodology for digital diagnostics of involuntary movement disorders (IMD)
leverages advanced information technology to integrate motor performance tracking with neurophys-
iological data. The system continuously monitors the position of the patient's hand using an interac-
tive, high-resolution tablet paired with an electronic pen. Simultaneously, it records cognitive neuro
signals from specific regions of the cerebral cortex, which are responsible for generating and modu-
lating oscillatory movements. These signals are captured via sensors embedded in a specialized EEG
helmet worn by the patient during the test.

During the diagnostic process, patients trace predefined test trajectories, such as spirals, on the
tablet. The system synchronizes the electronic pen's position and pressure data with real-time read-
ings from the cortical neuro nodes, ensuring precise alignment between motor actions and cognitive
activity. All collected data is stored in a digital format for subsequent analysis.

To interpret this data, a hybrid analytical framework combining Fourier-based wave signal
analysis and advanced computational techniques is employed. This model decomposes the recorded
signals to identify the interplay between involuntary motor disturbances (IMDs) and the cognitive
influences from the cerebral cortex. The approach enables a detailed examination of movement irreg-
ularities and their underlying neurophysiological causes, providing insights that are unattainable
through traditional diagnostic methods.

This methodology, described in greater detail in our subsequent works, highlights the potential
of combining high-resolution motion capture with neuro-cognitive feedback analysis for improved
diagnosis and treatment of disorders characterized by abnormal motor and cognitive interactions. By
integrating these technologies, the system achieves a robust, synchronized platform for analyzing
complex neurological phenomena.

Hardware Overview. Movement Data Collection Using a Graphics Tablet
For the quantitative assessment of patient movement, the Huion KAMVAS Pro 16 graphics
tablet was used, which captures the position and pressure of the stylus in real-time throughout the
experiment. While typically used for artistic purposes, this tablet was adapted with custom software
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to record the X and Y coordinates as a function of time. The tablet provides high precision, with data

accuracy and frequency dependent on the tablet’s specifications, making it suitable for detailed move-
ment analysis.

Fig. 1. Huion KAMVAS Pro 16 graphics tablet

NeuroCom Electroencephalography System by KHAI-MEDYKA
The study employed the NEUROCOM computer electroencephalography (EEG) system, devel-
oped by KHAI-MEDYKA, to record brain signals [6]. This fifth-generation EEG system is designed

for detailed analysis and interpretation of EEG signals, including evoked potentials, which are essen-
tial for scientific research.

Fig. 2. The data collection process from the NeuroCom electroencephalography complex
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Fig. 3. Demonstration of using research hardware

The system includes a 16-channel electrode helmet that transmits EEG data to a personal com-
puter in real-time. Data is collected at a frequency of 500 Hz (2 ms intervals) and processed through
specialized software. The EEG signals are conditioned and post-processed on the PC, with the data
stored in both raw text and visual formats for further analysis.

Methods and Participants

The study included five anonymized patients diagnosed with various neurological conditions
characterized by tremor. Each participant completed the experimental task involving spiral draw-
ing under different conditions, resulting in a total of 18 trials across all participants. One patient
was tested twice in two separate sessions to assess the effect of medication on tremor, providing
six trials in total.

1. Patient A (Female, Age 50-60):

¢ Diagnosis: Parkinson’s Disease, Stage 3 (Hoehn and Yahr scale), with moderate akinetic syn-
dromes and severe limb tremor.

e Session Details: This patient performed three trials in the morning after taking medication and
three additional trials in the afternoon, once the medication’s effects had diminished, showing pro-
nounced tremor. This allowed for comparative analysis under medicated and unmedicated states.

2. Patient B (Female, Age 70280):

¢ Diagnosis: Parkinson’s Disease, Stage 2 (Hoehn and Yahr scale), with moderate akinetic syn-
dromes and mild tremor in the right limbs.

e Session Details: The patient completed three trials without complications, with mild tremor
symptoms observed during the tasks.

3. Patient C (Male, Age 70280):

¢ Diagnosis: Parkinson’s Disease, Stage 3 (Hoehn and Yahr scale), with moderate akinetic syn-
dromes and pronounced limb tremor.

e Session Details: The patient had vision difficulties, which impacted his ability to draw a pre-
cise spiral. For this patient, the analysis focused on movement patterns rather than strict adherence to
the spiral shape.

4. Patient D (Male, Age 30—40):

¢ Diagnosis: Extrapyramidal tremor of unspecified origin.

e Session Details: The patient completed the task three times, showing tremor characteristics
associated with non-specific extrapyramidal disorders, possibly influenced by work-related stress and
digestive issues.

5. Patient E (Female, Age 50—60):

¢ Diagnosis: Sequelae of meningoencephalitis with choreiform hyperkinesia of the right arm.
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e Session Details: The patient also had vision problems, which affected her ability to follow the
spiral pattern. The analysis concentrated on movement irregularities linked to her neurological condition.

Experimental Procedure
Participants performed a spiral drawing task on a Huion KAMVAS Pro 16 graphics tablet,
which recorded their hand movements in real-time. Each participant performed the task three times
per session, except for Patient A, who completed two sessions, resulting in six trials.

Data Acquisition

1. Graphics Tablet Data:

e The graphics tablet captured detailed movement data, including the trajectory, speed, and
deviations from the intended path, allowing for an in-depth analysis of tremor characteristics.

2. EEG Recording:

e EEG data were collected using the NEUROCOM system with 16 electrodes placed on the
occipital and parietal lobes, areas known for their involvement in motor control and sensory process-
ing. Two additional electrodes (reference and ground) were positioned near the ears to stabilize and
reduce noise in the signal.

Synchronization and Data Collection
Both the graphics tablet and EEG data were synchronized using shared timestamps, enabling
precise temporal analysis of the relationship between observed motor tremor and neural activity.

Ethical Considerations
Patient privacy and confidentiality were strictly maintained, with all data anonymized and
securely handled as part of routine assessments. No personal or identifying information was dis-
closed, ensuring full compliance with ethical standards.

EEG Recording and Preprocessing
e EEG System and Setup: Description of the NEUROCOM EEG system, electrode placement
focusing on the occipital and parietal lobes, and the role of REF and GND electrodes near the ears.
e Electrode Placement Rationale: Explanation of the posterior brain regions' involvement in
motor control, referencing existing literature.
e Data Synchronization: Details on synchronizing EEG and graphics tablet data using shared
timestamps for accurate temporal analysis.

Hybrid Model for Analyzing Involuntary Movement Disorders with Cognitive Neurofeedback

This hybrid model analyzes involuntary movement disorders (IMD) by segmenting hand move-
ments based on wave signal propagation. The system captures hand trajectories via an electronic pen
drawing an Archimedean spiral on an interactive tablet. Deviations from the template provide data
on the patient’s neurological condition. The complex pen movement is broken into smaller segments,
allowing for detailed analysis of IMD. Cognitive neurofeedback from the cerebral cortex (CC) is
integrated through EEG signals, which are synchronized with the pen's movement [10]. This model
offers quantitative insights into the amplitude and frequency of IMD, and the segmentation process
can be adjusted based on the complexity of the movement.

Digital Analysis of IMD Limb Movement Trajectories
It represents a model-based approach formulated in matrix form, which calculates the position
of an electronic pen on an interactive tablet. The matrix expressions enable efficient computation,
including parallel processing of data.
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The experimental setup used for capturing EEG signals and involuntary movement during a
drawing task. Participants trace a spiral pattern on a graphics tablet/monitor using a stylus, while
EEG signals are recorded via electrodes attached to their scalp. The system synchronizes the motor
data with the EEG signals, allowing the extraction of features related to motor control and cognitive
feedback mechanisms.

- T Fll(t]’l]’ll)
“ (tl’ll) I, (tI’IZ’ll) I, (tz’lz’lz)
u, (tz,lz)
=T, (tlh) T o(thl)h) Tu(e0,00))
uj (tj’lj)
u (t l )J 1—‘n-ﬁ—l,l (tl’ln+1’ll) 1—‘n-ﬁ—l,Z (t2’1n+l’l2)§(t2) 1—‘)H—l,/' (tj’ln+l’lj)
L n+l \"n+12"n+l
_F11+l,n+1 (t)1+1’ln+1’ln+1) (1)
I Sl, (Zl) Sz1 (tl) Sm, (Zl) ] _al ]
Slz (tz) Sz2 (Zz) sz (tz) o,
S, () S, () S, ) | |
_Slm (tn+1) SZM (tn+1) Sm,”I (tn+1 )_ _am i

Range of matrices and vectors used in the model.

Vector of Amplitude Deviations: Represents the deviation of IMD movements from stand-
ard trajectories (e.g., Archimedean spirals): [u (@1 j)], j=Ln+1. The vector captures geometric
coordinates along the trajectory at specific time intervals, segmenting the IMD path into elementary
motion components. /,, 7, —the geometric coordinate along the movement trajectory aligns with the
Archimedean spiral’s linear transformation. Its position depends on the elapsed time associated with
the trajectory. The variable j acts as an index that identifies the sequence of elementary segments
within the IMD trajectory. Additionally, » indicates the total number of division points along the
IMD trajectory, breaking it into simpler, smaller motion segments.

Feedback Impact Matrix: Quantifies how cognitive signals influence individual IMD trajectory
segments. It is calculated as follows:

T I C)
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Here, p;, represents the amplitude characteristic for the i-th segment of the IMD trajectory,

B,, m=0,00 corresponds to the components of the spectral hybrid Fourier function, and the associ-
ated set of spectral values.

Cognitive Signal Matrix: Contains the values of signals collected from sensors positioned on
neural nodes of the cerebral cortex via an EEG helmet.
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The matrix links the signals to specific segments of the IMD trajectory, enabling detailed feed-
back analysis: [sl._(tj)], i=1m, j=Ln+l1.

Adaptive Coefficient Vector: Represents the influence of cognitive signals from each EEG sen-
sor on IMD movement elements. These coefficients are calculated using an algorithm described in the
subsequent matrix formulation: o, ], i=1,m.

Analytical Solution
Through matrix computations, an analytical vector solution is derived, establishing a direct
relationship between amplitude deviations in IMD and the cognitive signal values over time. The
model incorporates both immediate sensor readings and residual effects of prior signal states, offering
a dynamic view of cognitive feedback on motor performance.
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This dependency enables precise tracking of feedback effects from EEG sensor data on each seg-
ment of the IMD trajectory, considering real-time values and cumulative aftereffects. Such a detailed
analytical framework significantly enhances the understanding of cognitive-motor interactions and
provides a robust basis for evaluating neurological disorders.

Impact of Medication on Tremor Control: A Comparative Analysis of Spiral Drawings

The comparison between the medicated and unmedicated spirals reveals a notable difference
in motor control. In the medicated state, the spiral appears smoother, with fewer deviations from the
intended path, indicating improved coordination and reduced tremor. The unmedicated spiral, how-
ever, exhibits significant irregularities, with sharp oscillations and tremor-related disruptions. These
visible tremor patterns highlight the lack of motor stability when medication is not administered. This
comparison underscores the role of medication in managing neurological conditions by providing
patients with better control over involuntary movements, significantly enhancing their ability to per-
form precise tasks.

Figure 4 shows the results of two computer testing sessions for a patient diagnosed with Parkin-
son's disease, Stage 3 according to the Hoehn and Yahr scale, conducted after taking the prescribed
dose of medication. As seen in the figure, the trajectory of the patient's hand movement with the
electronic pen on the graphics tablet is relatively stable, reflecting a calmer state of the patient. These
results indicate minimal tremor during the two drawing attempts, which corresponds to a controlled
motor state due to the lasting effects of the medication. The deviation analysis of the patient’s hand
movement for these two attempts is shown in Figure 6.
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Fig. 4. Spiral Drawings. Patient A with medication (attempts 2 and 3)
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Fig. S. Spiral Drawings. Patient A without medication (attempts 5 and 6)

Figure 5 presents the results of the next two computer testing attempts conducted by the same
patient, a few hours after the initial session. By this time, the medication's effects had worn off,
resulting in a noticeable increase in tremor severity. As shown in Figure 5, the trajectory of the hand
movement with the electronic pen on the graphics tablet initially exhibits minor tremors, which inten-
sify as the movement progresses. This increase in tremor is likely due to the patient’s agitated state.
The worsening tremor highlights the reduced motor control as the medication’s effects diminished.
A detailed analysis of the deviations in the patient’s hand movement trajectories for both attempts is
provided in Figure 7.

Figure 6 illustrates the measured R values and the Gaussian filter-based fitting of the R data for
Patient A under the influence of medication (attempts 2 and 3). The plot displays two curves: the raw
measured R values, which represent the radial distance from the center of the spiral as a function of
the angle , and the smoothed R values obtained using a Gaussian filter. The smoothing process helps
reduce noise in the data, providing a clearer representation of the underlying movement pattern. The
smoother curve highlights the overall trajectory of the hand movement with reduced tremor, reflect-
ing the patient’s improved motor control under medication. The comparison between the raw and
fitted curves offers insight into the consistency of the hand movements and the effectiveness of the
smoothing technique.
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Fig. 6. Measured R values and Gaussian filter-based fitting of R data. Patient A with medication
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Fig. 7. Measured R values and Gaussian filter-based fitting of R data. Patient A without medication
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Figure 7 shows the measured R values and the Gaussian filter-based fitting of the R data for
Patient A without medication (attempts 5 and 6). The plot features two curves: the raw measured
R values, representing the radial distance as a function of the angle 8, and the smoothed R values
obtained using a Gaussian filter. In this case, the raw data exhibits more pronounced fluctuations,
indicating increased tremor due to the absence of medication. The Gaussian-filtered curve smooths
out some of these fluctuations, but the tremor’s impact remains evident in the larger deviations from
the ideal trajectory compared to the medicated state. This figure highlights the significant deteriora-
tion in motor control when medication is not administered.

Figure 8 shows the residual fluctuation AR=R_ —R ted for Patient A with medication (attempts
2 and 3). It represents the difference between the raw and smoothed R values, highlighting remaining
tremors or irregularities in hand movement. The x-axis shows time in seconds, and the y-axis shows
AR in millimeters. The relatively small fluctuations indicate stable motor control with minimal tremor
while the patient is on medication.

Figure 9 illustrates the residual fluctuation AR=R  _—R  sted for Patient A without medication
(attempts 5 and 6). This shows the difference between the raw measured R values and the smoothed R
values, highlighting the remaining tremors or irregularities in movement. The x-axis represents time
in seconds, and the y-axis shows 4R in millimeters. In contrast to the medicated state, the fluctuations
here are much larger, indicating more pronounced tremor and less controlled hand movement without
medication.

AR, mm

0 10 20 30 40 50
t,s

Fig. 8. Residual fluctuation AR = R measured — R fitted. Patient A with medication (attempts 2 and 3)
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Figure 10 displays the frequency decomposition for Patient A with medication (attempts 2 and 3).
This plot shows the breakdown of the residual fluctuations AR into their frequency components using
a Fourier transform. The x-axis represents the frequency in Hertz (Hz), and the y-axis shows the
amplitude of the oscillations in millimeters. The graph highlights the dominant frequency compo-
nents of the patient's tremor while on medication, offering insights into the specific frequency ranges
where tremor activity is most prominent. The relatively lower amplitude values indicate reduced
tremor intensity due to the medication’s effect on motor control.
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Fig. 11. Frequency decomposition. Patient A without medication (attempts 2 and 3)

Figure 11 presents the frequency decomposition for Patient A without medication (attempts 5
and 6). This plot breaks down the residual fluctuations AR into their frequency components using a
Fourier transform. The x-axis represents frequency in Hertz (Hz), and the y-axis shows the ampli-
tude of the oscillations in millimeters. In contrast to the medicated state, the amplitude values are
significantly higher, indicating stronger tremor activity. The presence of pronounced peaks in certain
frequency ranges reflects the increased severity of the patient's tremor when medication is not active.

The analysis of the spiral data involved calculating R values and fitting them using a Gaussian
filter. The results show that under the influence of medication, the movement curve is smoother and
more linear, indicating better motor control with minimal signs of tremor. In contrast, the unmedi-
cated data shows significant fluctuations, which reflect the presence of tremor.
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To further analyze the movement, we calculated the fluctuation and performed frequency decom-
position. The results show a clear peak at 4—6 Hz in the unmedicated condition, which is typical for
tremor. In the medicated state, this peak is significantly reduced or absent, indicating effective tremor
suppression and improved motor control. The graphs highlight this difference, with higher amplitudes
in the 4-6 Hz range for the unmedicated condition and much lower amplitudes under medication.

Conclusions

The study introduces an advanced information technology approach for evaluating neurological
movements based on a hybrid model that integrates wave signal analysis with cognitive feedback
from the cerebral cortex. This method provides a detailed vector analysis of spiral drawing move-
ments performed with an electronic pen on a digital tablet, allowing for precise identification of
movement trajectories and feedback mechanisms without the substantial information loss typically
seen in traditional signal processing. The analysis revealed clear differences between the medicated
and unmedicated states. Frequency decomposition showed a significant peak at 4-6 Hz in the unmed-
icated condition, indicating tremor activity, which was significantly reduced or absent with medica-
tion. This highlights the effectiveness of medication in reducing tremor and improving motor control.

Overall, this approach offers a more detailed understanding of the neurological mechanisms
behind involuntary movements, particularly under the influence of cognitive feedback from the nerv-
ous system, enhancing diagnostic accuracy and informing more effective treatment strategies.

The hybrid model analyzes wave signals of involuntary movements influenced by cerebral cor-
tex neural nodes, enabling precise, rapid diagnosis of neurological disorders from injuries. It identi-
fies affected brain regions and guides effective treatment to restore neurological function.
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