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РОЗРОБКА АРХІТЕКТУРИ ГІБРИДНОЇ ІНТЕЛЕКТУАЛЬНОЇ СИСТЕМИ 
ДЛЯ АВТОМАТИЗОВАНОГО КЕРУВАННЯ ПРОЦЕСОМ ЧИСЕЛЬНОГО 

МОДЕЛЮВАННЯ

У статті представлено архітектуру гібридної інтелектуальної системи, призначеної для автоматизова-
ного керування процесом чисельного моделювання оптичних властивостей багатошарових структур. Основна 
мета розробки – підвищити точність, стабільність та обчислювальну ефективність при моделюванні склад-
них фізичних явищ у неоднорідних середовищах. Запропонована система поєднує класичні фізико-математичні 
моделі (зокрема RCWA) з адаптивними сітковими алгоритмами, модулями машинного навчання та компонента-
ми оптимізації на основі градієнтних методів. Архітектура реалізована як модульна система, що включає фізич-
не ядро, модулі оцінки похибки, оптимізації, машинного навчання, а також керуючого агента, який координує 
роботу всіх підсистем.

У ході моделювання передбачено динамічну зміну параметрів дискретизації залежно від локальних особли-
востей спектру – зокрема, в зонах спектральних резонансів відбувається автоматичне згущення сітки, тоді як 
у стабільних ділянках – її розрідження. Це дозволяє досягти високої точності без надмірного навантаження на 
обчислювальні ресурси. Система також забезпечує апостеріорну оцінку точності моделювання, що дозволяє 
виявляти області з потенційно високою похибкою й адаптивно уточнювати параметри розрахунку.

Результати чисельних експериментів свідчать про зниження середнього відхилення від еталонного розв’язку 
до менше ніж 1.2 % у порівнянні з понад 4.5 % у випадку використання неадаптивної схеми. Також реалізовано 
механізм формування рекомендацій у форматі JSON, який пропонує оптимальні геометричні конфігурації бага-
тошарової структури для підсилення резонансної поведінки, зменшення відбиття та покращення спектральної 
селективності. Гібридна система продемонструвала стійкість до варіацій вхідних параметрів та гнучкість 
у застосуванні до нових фізичних задач.

Запропонована архітектура відкриває перспективи її застосування у мультифізичних задачах, інтеграції 
з хмарними платформами та реалізації паралельних обчислень. Вона може бути використана в задачах спек-
троскопії, оптичного сенсорного аналізу, проектування фотонних структур і вивчення тонкоплівкових матері-
алів. Зроблені висновки підтверджують ефективність синергії класичних чисельних методів та сучасних інте-
лектуальних технологій у задачах високоточного моделювання.

Ключові слова: гібридна інтелектуальна система, чисельне моделювання, багатошарові структури, спектр 
пропускання, адаптивні алгоритми, оптична оптимізація.
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DEVELOPMENT OF A HYBRID INTELLIGENT SYSTEM ARCHITECTURE FOR AUTOMATED 
CONTROL OF THE NUMERICAL MODELING PROCESS

The article presents the architecture of a hybrid intelligent system designed for automated control of the process 
of numerical modeling of optical properties of multilayer structures. The main goal of the development is to increase 
the  accuracy, stability and computational efficiency in modeling complex physical phenomena in heterogeneous 
environments. The proposed system combines classical physical and mathematical models (in particular, RCWA) 
with adaptive grid algorithms, machine learning modules and optimization components based on gradient methods. 
The  architecture is implemented as a modular system that includes a physical core, error estimation, optimization, 
machine learning modules, as well as a control agent that coordinates the operation of all subsystems. During 
the modeling, a  dynamic change in  the discretization parameters is provided depending on the local features of the 
spectrum – in particular, in the zones of spectral resonances, the grid is automatically condensed, while in stable areas – 
its rarefaction. This allows achieving high accuracy without excessive load on computing resources. The system also 
provides a posteriori assessment of the modeling accuracy, which allows to identify areas with potentially high error and 
adaptively refine the calculation parameters. The results of numerical experiments indicate a reduction in the average 
deviation from the reference solution to less than 1.2 % compared to more than 4.5 % in the case of using a non-adaptive 
scheme. A mechanism for generating recommendations in JSON format is also implemented, which suggests optimal 
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geometric configurations of the multilayer structure to enhance the resonant behavior, reduce reflection and improve 
spectral selectivity. The hybrid system has demonstrated resistance to variations in input parameters and flexibility 
in application to new physical problems. The proposed architecture opens up prospects for its application in multiphysics 
problems, integration with cloud platforms and implementation of parallel computing. It can be used in spectroscopy, 
optical sensor analysis, design of photonic structures and study of thin-film materials. The conclusions drawn confirm 
the effectiveness of the synergy of classical numerical methods and modern intelligent technologies in high-precision 
modeling tasks.

Key words: hybrid intelligent system, numerical modeling, multilayer structures, transmission spectrum, adaptive 
algorithms, optical optimization.

Постановка проблеми
Чисельне моделювання складних фізичних процесів у багатьох галузях науки й техніки вимагає не лише висо-

кої точності результатів, а й ефективного використання обчислювальних ресурсів. У традиційних підходах пара-
метри моделювання задаються фіксовано або визначаються вручну, що призводить до перевитрат ресурсів або 
нестабільності розв’язку при зміні умов задачі. Сучасні високоточні методи, такі як метод скінченних елементів, 
TMM, RCWA тощо, демонструють високу ефективність, але потребують тонкого налаштування параметрів сітки, 
кроків дискретизації, порядку апроксимації й інших ключових характеристик.

У контексті збільшення складності фізичних моделей (багатошаровість, нелінійність, багатофазність), вини-
кає потреба в автоматизованих засобах керування процесом моделювання, які здатні адаптуватися до специфіки 
задачі без втручання людини. Поява методів штучного інтелекту та машинного навчання відкрила можливості 
для реалізації інтелектуальних компонентів, здатних аналізувати попередні результати, прогнозувати ефективні 
параметри та самостійно керувати процесом обчислень.

Однак інтеграція таких компонентів у класичні обчислювальні схеми потребує нової архітектурної парадигми, 
де фізичне ядро, інтелектуальні модулі та система керування функціонують як єдине ціле. Розробка гібридної 
інтелектуальної системи, що поєднує фізичне моделювання, оптимізацію та машинне навчання в єдиному адап-
тивному циклі, є актуальним і перспективним напрямом для забезпечення високої точності, стійкості та ефектив-
ності чисельного моделювання в умовах зростаючих обчислювальних та інженерних викликів.

Аналіз останніх досліджень та публікацій
Адаптивні методи моделювання хвильових процесів у багатошарових структурах знаходять широке засто-

сування у проектуванні сенсорів, оптичних фільтрів і фотонних пристроїв. Зокрема, у роботі [1] досліджується 
локалізація електромагнітного поля, мод і резонансів у нанофотонних кристалах, що є ключовими елементами 
сучасної фотоніки. У статті [2] розглядаються наномасштабні оптичні біосенсори, що базуються на фотонних 
кристалах, із застосуванням вузьких оптичних пасток для підвищення чутливості. Адаптивні методи дозволяють 
підвищити точність і селективність газоаналізаторів [3] в інфрачервоному та інтерферометричному діапазонах 
шляхом оптимізації сенсорної конфігурації та моделювання спектральної відповіді з урахуванням перехресної 
чутливості. Це підкреслює важливість точного та ефективного чисельного аналізу оптичних явищ у складних 
структурах. Застосування комбінованих моделей, що поєднують фізичне моделювання з нейронними мережами 
[4–7], є актуальним напрямом для підвищення точності та адаптивності аналізу складних газових сумішей у про-
мисловості, екологічному моніторингу та науці. Актуальним напрямом є також дослідження електрофізичних 
властивостей та синтезу структурованих тонких плівок у плазмових умовах [8–9], зокрема на основі надйонних 
провідників. Це дозволяє отримувати плівки з контрольованими властивостями для застосування в сенсорних або 
іоннотранспортних пристроях. Висока актуальність дослідження зумовлена потребою зменшення обчислюваль-
них витрат без втрати точності чисельного моделювання складних фізичних процесів, що досягається шляхом 
впровадження методів багаторівневої адаптивної декомпозиції [10].

Математичне моделювання оптичних властивостей багатошарових структур широко базується на чисельних 
методах, в тому числі – методі матриці передачі (TMM). Класичні праці, такі як монографія [11], детально опи-
сують поведінку електромагнітних хвиль у шаруватих середовищах. У праці [12] розглядаються основи поши-
рення хвиль у діелектричних структурах, включно з інтерференційними ефектами та резонансами. Однак, при 
чисельному розв’язанні задач на фіксованій сітці виникають суттєві труднощі: зокрема, у ділянках спектра з різ-
кими змінами коефіцієнта пропускання (наприклад, поблизу резонансів) недостатня щільність вузлів призводить 
до втрати точності, тоді як надлишкова дискретизація у спектрально гладких областях спричиняє перевитрати 
ресурсів. Ці проблеми ефективно розв’язуються за допомогою адаптивних методів дискретизації. Праці [13–15] 
заклали фундамент таких підходів на основі апріорної та апостеріорної оцінки похибок. У контексті моделю-
вання оптичних процесів набули поширення методи згущення сітки в ділянках із великими градієнтами фізич-
них величин. Це дозволяє досягти високої точності розрахунків саме в тих областях, де спостерігається складна 
хвильова поведінка – зокрема, резонансне підсилення, інтерференційні ефекти або зміна фази – при одночасному 
зменшенні обчислювальних витрат у стабільних спектральних зонах. Сучасні підходи до спектрального моде-
лювання дедалі частіше використовують адаптивні сітки для підвищення ефективності чисельних розрахунків. 
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У роботі [16] продемонстровано використання адаптивних сіток у методі FDTD, зокрема з частотною адаптацією, 
що дозволяє точніше враховувати особливості хвильових процесів. Дослідження [17] підтверджує ефективність 
адаптивного спектрального аналізу в задачах моделювання тонких плівок, де згущення довжин хвиль у діапазо-
нах з різкими змінами пропускання забезпечує високу точність при значному скороченні обчислювальних витрат. 
У праці [18] запропоновано чисельний підхід до моделювання гравітаційно зумовлених потоків у тонких плів-
ках, де адаптивне уточнення сітки дозволяє ефективно розв’язувати нелінійні рівняння з напівнеявною схемою. 
Показано, що такий підхід дозволяє досягти точності, зіставної з рівномірними сітками, водночас зменшуючи 
потреби в ресурсах.

У роботі [19] досліджуються хвильові процеси в багатошарових тонких плівках та їх чисельне моделювання 
з використанням адаптивних гібридних методів. Запропоновано комбінований підхід TMM–FEM для точного 
моделювання структур із градієнтними властивостями та неоднорідностями. Адаптивне уточнення сітки дозво-
лило зменшити обчислювальні витрати на 40 % при збереженні похибки <1 %. Таким чином, адаптивна дискре-
тизація виступає ключовим компонентом сучасних гібридних обчислювальних систем. Проте подальше вдоско-
налення таких методів тісно пов’язане з особливостями спектрального аналізу. У багатошарових діелектричних 
структурах спектральні властивості, зокрема інтерференційні та резонансні ефекти, відіграють ключову роль 
у формуванні оптичної відповіді. Монографія [20] систематизує знання про тонкоплівкові фільтри та інтерферен-
ційні структури, акцентуючи на складності точного опису резонансних явищ. Такі ефекти супроводжуються різ-
кими змінами коефіцієнта пропускання, що потребує високої спектральної роздільності та ускладнює побудову 
універсальних чисельних сіток.

Однак класичні чисельні підходи з фіксованою дискретизацією часто виявляються неефективними або надто 
ресурсоємними. У цьому контексті стає актуальним застосування гібридних інтелектуальних систем, які здатні 
автоматично адаптувати параметри моделювання до локальних спектральних особливостей. Поєднання адап-
тивного спектрального аналізу з машинним навчанням та фізично-обґрунтованими моделями дозволяє не лише 
підвищити точність, а й значно зменшити обчислювальні витрати. Таким чином, інтелектуальні системи від-
кривають нові можливості для розв’язання задач високоточного моделювання складних оптичних структур. Так, 
у [21] запропонували підхід Physics-Informed Neural Networks (PINNs), у якому адаптивність забезпечується через 
мінімізацію похибки між даними та фізичною моделлю. У праці [22] розглядають переваги поєднання класичних 
методів з ШІ у контексті моделювання складних фізичних процесів, що актуально для спектроскопії.

Проведений аналіз літератури свідчить про те, що адаптивне моделювання є ефективним інструментом для 
підвищення точності та продуктивності чисельного аналізу багатошарових структур. Застосування адаптивного 
згущення сітки дозволяє зосередити обчислювальні ресурси в областях із вираженими неоднорідностями, такими 
як вузькі резонансні області, що значно підвищує ефективність розрахунків без втрати точності. Особливої пер-
спективи набувають гібридні підходи, які поєднують класичні методи TMM, FDTD, FEM із сучасними інтелек-
туальними технологіями, такими як фізично-обґрунтовані нейронні мережі (PINNs) або нейромережеві моделі 
оцінки похибок. Така інтеграція відкриває нові можливості для моделювання та аналізу у спектроскопії, сен-
сориці, фотоніці та оптоелектроніці. Таким чином, подальший розвиток гібридних інтелектуальних систем, що 
поєднують фізичне моделювання з адаптивними алгоритмами, є актуальним та перспективним напрямом для 
чисельного аналізу складних багатошарових структур у прикладних наукових дослідженнях.

Формулювання мети дослідження
Розробити архітектуру та дослідити гібридну інтелектуальну систему чисельного моделювання багатошаро-

вих структур, яка поєднує класичні методи фізичного моделювання з адаптивними алгоритмами та штучним 
інтелектом для підвищення точності, продуктивності та стійкості до варіацій параметрів задачі.

Завдання дослідження:
1.	 Проаналізувати сучасні методи чисельного моделювання оптичних властивостей багатошарових структур 

та визначити їх обмеження щодо продуктивності та адаптивності.
2.	 Дослідити можливості адаптивної дискретизації (сіткового згущення) для підвищення точності моделю-

вання в областях з вузькими резонансами.
3.	 Розробити методику інтеграції адаптивних сіткових алгоритмів з класичними методами.
4.	 Реалізувати інтелектуальні компоненти моделі для автоматичної оптимізації обчислювального процесу.
5.	 Провести чисельні експерименти для оцінки точності, ефективності та адаптивності запропонованої 

моделі.
6.	 Проаналізувати результати моделювання, порівнявши їх із класичними підходами, та обґрунтувати доціль-

ність застосування гібридної інтелектуальної системи у прикладних задачах.
Викладення основного матеріалу дослідження

Чисельне моделювання складних фізичних процесів зазвичай формалізується як розв’язання задачі мате-
матичної фізики у певній скінченній області з початково-крайовими умовами. Узагальнено, процес чисельного 
моделювання можна представити як обчислювальну трансформацію:
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M:{вхідні дані,параметри} → вихідні дані (розв’язок),

де:
•	 вхідні дані включають геометрію області, фізичні властивості матеріалів, початкові та граничні умови;
•	 параметри моделювання – це числові характеристики, які визначають спосіб дискретизації (кроки сітки, 

порядок апроксимації), вибір чисельної схеми, точність обчислень тощо;
•	 вихідні дані – це розв’язки основного рівняння чи системи рівнянь у заданій області, які мають відповідати 

фізичному змісту задачі з прийнятною точністю.
Однак ефективність та коректність чисельного розв’язку значною мірою залежать від правильного вибору 

параметрів моделювання. На практиці виникають такі ключові проблеми, що потребують автоматизації. Перш за 
все, це вибір параметрів дискретизації, таких як просторовий і часовий крок, порядок апроксимації та структура 
сітки, є критичним для досягнення балансу між точністю розв’язку та обчислювальною ефективністю. Занадто 
груба сітка знижує точність, тоді як надмірно дрібна – призводить до зростання обчислювальних витрат. Ручне 
налаштування цих параметрів у кожному випадку є не лише трудомістким, а й не масштабованим. Водночас необ-
хідно забезпечити баланс між бажаним рівнем точності та прийнятною складністю розрахунків. Такий компроміс 
зазвичай досягається емпіричним шляхом, проте у багатофакторних і високообчислювальних моделях це перетво-
рюється на задачу складної багатовимірної оптимізації, що потребує автоматизації. Окрему проблему становить 
контроль стабільності чисельної схеми: багато методів мають строгі обмеження, пов’язані зі стійкістю, напри-
клад, умова Куранта для явних схем або обмеження на спектр матриці в методі скінченних елементів. Відсутність 
автоматичного аналізу може призвести до некоректного чи нестійкого розв’язку. Крім того, фізичні процеси часто 
мають локалізовані особливості – різкі градієнти, фронти або сингулярності – що потребує адаптивного перероз-
поділу обчислювальних ресурсів: деталізація в критичних зонах і спрощення в зонах з повільною динамікою. 
Для цього необхідна здатність моделі динамічно змінювати рівень деталізації на основі аналізу поточного стану 
розв’язку, що теж не може бути ефективно реалізовано без елементів інтелектуального керування.

Таким чином, задача полягає у створенні такої архітектури чисельного моделювання, яка дозволяє автоматично 
(або напівавтоматично) обирати та оновлювати параметри моделі, забезпечуючи при цьому контроль точності, адап-
тацію до особливостей задачі, стабільність чисельної схеми та ефективне використання обчислювальних ресурсів.

Для досягнення цієї мети пропонується інтеграція механізмів машинного навчання, оптимізації та інтелекту-
ального керування у єдину функціональну систему.

Функціональна структура гібридної інтелектуальної системи. Гібридна інтелектуальна система для авто-
матизованого керування процесом чисельного моделювання побудована на модульній архітектурі, що забезпечує 
гнучкість, масштабованість та адаптивність у вирішенні складних обчислювальних задач. Кожен модуль системи 
виконує окрему функцію, але всі вони тісно взаємодіють між собою через уніфіковані інтерфейси обміну даними, 
що дозволяє реалізувати замкнений керований цикл обчислень.

Центральною частиною системи є фізичне ядро, яке відповідає за реалізацію чисельного моделювання на 
основі відповідних фізико-математичних моделей. Воно включає формалізацію рівнянь (рівнянь переносу тепла, 
рівнянь Максвелла або хвильових рівнянь), дискретизацію області розрахунку (з використанням регулярної або 
адаптивної сітки), застосування чисельних методів (FDM, FEM, RCWA, TMM) і побудову вектора розв’язку. 
У реалізації фізичного ядра використовуються такі бібліотеки, як FEniCS (для методу скінченних елементів), 
Meep (у випадку електродинамічних задач на основі FDTD), а також власноруч реалізовані алгоритми RCWA на 
мові Python із застосуванням бібліотек NumPy та SciPy.

Результати моделювання передаються до модуля оцінки похибки, який аналізує якість розв’язку, визначає зони 
з недостатньою точністю та формує рекомендації щодо уточнення параметрів моделі. Реалізація цього модуля 
базується на порівнянні розв’язків різної точності (метод подвійного розв’язку) та обчисленні похибок у нормі L2 

і енергетичній нормі. Для автоматичного виявлення областей з високою похибкою використовується адаптивна 
розмітка сітки з локальним уточненням за допомогою квадродерева.

Для забезпечення балансу між точністю, стабільністю та обчислювальними витратами застосовується опти-
мізаційний модуль, який виконує пошук оптимальних конфігурацій параметрів чисельної схеми. Реалізовано під-
тримку генетичного алгоритму (на базі бібліотеки DEAP) та алгоритму диференціальної еволюції (SciPy.optimize.
differential_evolution). Цільова функція включає вагову комбінацію оцінки похибки, обчислювального часу та 
штрафу за порушення умов стабільності (наприклад, перевищення критичного кроку за умовою Куранта).

J( p) = α ⋅ Error( p) + β ⋅ Time( p) + γ ⋅ StabilityPenalty( p),

де p – вектор чисельних параметрів, α, β, γ – вагові коефіцієнти.
Допоміжну роль у прогнозуванні та пришвидшенні прийняття рішень відіграє модуль машинного навчання. 

У реалізації використовуються моделі типу MLP та Random Forest з бібліотеки scikit-learn для регресійного 
наближення параметрів. Для задач динамічного керування можна використовувати Q-Learning із таблицею станів 
та винагород, що можна додатково реалізувати в середовищі OpenAI Gym для тестування агентів.
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Координацію всієї системи виконує управляючий агент, який інтегрує інформацію з усіх модулів, приймає 
рішення щодо подальших дій, змінює параметри в реальному часі та забезпечує адаптивне керування всіма про-
цесами. Реалізовано просту версію агента – rule-based систему на основі дерева прийняття рішень для задач 
із обмеженою складністю. Додатково цікавою є розробка агента з підкріпленням (Deep Q-Network, реалізація 
у середовищі Stable-Baselines3) для адаптивного вибору стратегій при моделюванні складних фізичних процесів 
із багатьма ступенями свободи.

Зв’язок між усіма модулями забезпечується за допомогою стандартизованих форматів даних – JSON для мета-
даних, HDF5 для великих масивів чисельних результатів, NetCDF для роботи з розподіленими сітками. У цен-
тралізованій архітектурі використовується внутрішній API на базі FastAPI, у розподілених сценаріях – черги 
повідомлень ZeroMQ. Для збереження історичних даних використовується MongoDB (NoSQL), а для семан-
тичної узгодженості параметрів – спеціально розроблений словник задач та онтологія параметрів чисельного 
моделювання.

Формалізація типової задачі. Розглянемо задачу застосування гібридної інтелектуальної системи для чисель-
ного моделювання процесу поширення електромагнітних хвиль у неоднорідному багатошаровому середовищі. 
Дана задача характерна для оптичної спектроскопії, фотоніки та моделювання наноструктур, де неоднорідності 
в просторі можуть значно впливати на характер хвильового поля.

Початкові умови включають геометрію багатошарової структури, що складається з чергування шарів з різною діе-
лектричною проникністю та товщиною, а також джерело збудження – монохроматичну плоску хвилю з певним кутом 
падіння. Задача формалізується у вигляді диференціальних рівнянь Максвелла з відповідними граничними умовами.

Фізичне ядро, реалізоване на базі RCWA-методу (Rigorous Coupled-Wave Analysis) з використанням власного 
Python-модуля на основі бібліотек NumPy та SciPy, виконує первинний розрахунок просторового розподілу елек-
тричного поля. Початкові параметри, такі як кількість гармонік у Фур’є-перетворенні та крок дискретизації по 
глибині, задаються за замовчуванням.

Модуль оцінки похибки проводить апостеріорний аналіз збіжності рішення, оцінює похибку в енергетичній 
нормі та виявляє області, де необхідна підвищена просторово-частотна роздільна здатність. На цій основі форму-
ється запит до оптимізаційного модуля на уточнення параметрів.

Оптимізаційний модуль за допомогою диференціальної еволюції (реалізація на основі scipy.optimize.
differential_evolution) виконує підбір оптимальної кількості гармонік, глибини розбиття структури по підшарах 
та ступеня згладжування границь між шарами. Цільова функція включає сумарну похибку, час розрахунку та 
стабільність рішення (через умовне число матриць).

Паралельно модуль машинного навчання, який попередньо був навчений на аналогічних задачах (архітектура 
Random Forest у scikit-learn), пропонує початкову оцінку оптимальних параметрів, що дозволяє значно скоротити 
кількість ітерацій оптимізації.

Управляючий агент (використовується rule-based система на основі дерева рішень) координує взаємодію моду-
лів: запускає повторне моделювання з новими параметрами, приймає рішення про зупинку або подальшу адапта-
цію, зберігає результати в базі даних MongoDB і оновлює історичні дані для подальшого навчання моделі.

Останнім етапом було формування інтелектуальною системою рекомендацій, на основі аналізу результатів 
чисельного моделювання (розподіл поля, спектр пропускання) у поєднанні з фізичними принципами. Вона виявляє 
невідповідності (неузгоджені товщини, різкі переходи показника заломлення) і застосовує евристичні правила – 
такі як чвертьхвильова умова та плавність градієнтів – для покращення резонансної поведінки чи мінімізації втрат. 
За потреби вона також використовує оптимізаційні алгоритми (генетичні), щоб знаходити кращі параметри струк-
тури для заданого спектрального діапазону. Рекомендації система формує у JSON-структурі параметрів.

Результатом роботи є розподіл електромагнітного поля у заданій структурі, спектр коефіцієнта пропускання 
або відбивання для вибраного діапазону частот та формування рекомендацій щодо оптимізації структури.

Архітектура та алгоритм роботи гібридної інтелектуальної системи. Рисунок 1 ілюструє розроблену архі-
тектуру гібридної інтелектуальної системи для чисельного моделювання, яка поєднує класичні обчислювальні 
методи з інструментами оптимізації та машинного навчання. Архітектура реалізує ітераційний підхід до моде-
лювання складних фізичних процесів з адаптивним управлінням точністю, параметрами сітки та ефективністю 
обчислень. Ключовими елементами є фізичне ядро для розв’язання задачі, модулі оцінки похибки й оптимізації, 
управляючий агент, а також підсистема машинного навчання, яка надає прогностичну підтримку та дозволяє 
здійснювати адаптацію в режимі онлайн. Це забезпечує гнучке й ефективне моделювання у задачах, що характе-
ризуються просторово-часовими неоднорідностями та високими вимогами до точності результатів.

Зупинимось детально на основних кроках архітектури гібридної інтелектуальної системи для чисельного 
моделювання [10].

1.	 Початкова ініціалізація. Завантаження початкових параметрів моделювання (сітка, точність, фізичні умови 
тощо). Слід зауважити, що можливе використання попередніх знань або моделей ML для передбачення стартових 
значень.
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2.	 Управляючий агент аналізує поточний стан системи, приймає рішення: запуск розрахунку, зміна параме-
трів або зупинка. Також отримує вхідні дані від оптимізатора та модуля ML.

3.	 Фізичне ядро виконує чисельний розрахунок задачі (метод скінченних різниць, елементів, TMM тощо). 
Повертає результат розв’язання (поля, функції, коефіцієнти і т.д.).

4.	 Модуль оцінки похибки виконує a posteriori оцінку похибки та генерує числовий показник точності 
рішення.

5.	 Перевірка умови точності. На цьому етапі відбувається порівняння похибки з допустимим порогом ε. Якщо 
похибка прийнятна → вихід результату, якщо ж ні → перехід до оптимізації.

6.	 Оптимізаційний модуль обчислює нові параметри моделювання (сітка, крок, коефіцієнти) на основі 
похибки. Використовує градієнтні методи та може взаємодіяти з ML-модулем для підказок.

7.	 Модуль машинного навчання прогнозує ефективні параметри чи сценарії розв’язання. Працює як асистент 
оптимізації та може оновлюватись під час роботи (онлайн-навчання).

8.	 Зворотний зв’язок. Оновлені параметри передаються назад до агента, який керує новим запуском фізич-
ного ядра. Цикл повторюється до досягнення умов завершення.

9.	 Вивід результату. Коли похибка < ε, система передає результат у зовнішній модуль (візуалізація, збере-
ження, інтерфейс користувача). Далі відбувається завершення або перезапуск з новими умовами.

Новизна запропонованої архітектури полягає у побудові гібридної інтелектуальної системи, що реалізує адап-
тивний керований цикл чисельного моделювання. У межах цього циклу фізичне ядро виконує основні обчис-
лення відповідно до заданих параметрів моделі. Модуль оцінки похибки забезпечує математичний контроль 
якості отриманого розв’язку на основі a posteriori аналізу. Подальша реакція системи формується через взаємо-
дію оптимізаційного модуля та модуля машинного навчання, які пропонують покращення параметрів або нові 
сценарії розрахунку. Центральну роль відіграє керуючий агент, що приймає рішення на основі даних усіх моду-
лів, реалізуючи стратегічне керування процесом чисельного моделювання. Така структура забезпечує динамічну 
адаптацію до складності задачі та ефективне досягнення заданої точності, інтегруючи фізико-математичні моделі 
з методами штучного інтелекту.

Валідація системи на синтетичних даних. Нижче демонструється застосування гібридної інтелектуальної 
системи для моделювання поширення TE-поляризованої електромагнітної хвилі в діапазоні довжин хвиль від 400 
до 800 нм при нормальному падінні (кут 0°) на багатошарову оптичну структуру. Структура складається з пові-
тря, трьох функціональних шарів і підкладки. Вхідна хвиля проходить через повітря з показником заломлення 1.0, 

Рис. 1. Архітектури гібридної інтелектуальної системи
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далі через послідовно розміщені шари з показниками заломлення 1.5 (100 нм), 2.0 (50 нм) і 1.7 (200 нм), після чого 
досягає підкладки з показником 1.4.

На рис. 2 приведено графік розподілу електромагнітного поля всередині багатошарової структури при 
TE-поляризованій хвилі в діапазоні довжин хвиль від 400 до 800 нм. Зображення демонструє варіацію амплітуди 
поля як функцію координати по глибині та довжини хвилі.

Рис. 2. Розподіл електромагнітного поля у багатошаровій структурі

Графік відображає просторово-спектральний розподіл амплітуди електромагнітного поля E(z, λ) у багато-
шаровій структурі при нормальному падінні TE-хвилі в діапазоні довжин хвиль від 400 до 800 нм. Уздовж гли-
бини структури чітко проглядаються межі між шарами. Це проявляється у стрибках і зміні амплітуди поля, що 
зумовлено частковим відбиттям і заломленням хвиль на межах середовищ з різними показниками заломлення. 
Такі переходи відповідають граничним умовам, що накладаються на електричне поле в неоднорідному серед-
овищі. У деяких ділянках спектра, зокрема в області 500–550 нм, спостерігається підсилення амплітуди поля 
всередині окремих шарів. Це свідчить про резонансні умови, коли довжина хвилі і геометрія структури сприяють 
конструктивній інтерференції та накопиченню енергії. Такі резонансні зони можуть бути корисними для задач 
фільтрації, підсилення сигналу або сенсорного виявлення. Для довжин хвиль ближче до червоної частини спектра 
(700–800 нм) амплітуда поля є більш приглушеною та демонструє менш виражену варіативність уздовж глибини. 
Це свідчить про деструктивну інтерференцію або недостатнє збудження мод усередині структури, тобто хвиля 
неефективно проникає вглиб або зазнає гасіння через неузгодженість фаз. Особливо помітна локалізація поля 
в шарі з показником заломлення 2.0, товщиною 50 нм. Цей шар формує вузьку оптичну пастку, що призводить до 
сильного модуляційного ефекту. Такі вузькі області локалізації можуть бути критично важливими для створення 
фотонних структур, які контролюють потік світла.

Загалом графік підтверджує, що багатошарова система демонструє спектрально залежну поведінку з елемен-
тами резонансу, інтерференції та хвильового згасання. Це дозволяє за допомогою оптимізації геометрії точно 
налаштовувати структуру для заданих довжин хвиль і досягати цільових характеристик – таких як зменшення 
втрат, фокусування енергії або спектральна селективність.

Наступним етапом було обчислення спектра пропускання виконувалося за допомогою RCWA, при цьому сис-
тема використовує 15 гармонік у Фур’є-розкладі та 100 точок дискретизації по глибині. Усі параметри моделі, 
включно з кількістю гармонік, щільністю сітки та цільовим діапазоном довжин хвиль, автоматично визначаються 
за допомогою модулів розробленої гібридної архітектури. Зокрема, модуль машинного навчання формує почат-
кові припущення щодо сітки, оптимізаційний модуль уточнює параметри на основі критеріїв точності й обчис-
лювальної ефективності, а управляючий агент координує адаптацію конфігурації впродовж моделювання. Це 
забезпечує збалансоване та автоматизоване керування складним процесом чисельного аналізу багатошарових 
структур. Результати моделювання профілю показника заломлення та спектр пропускання багатошарової струк-
тури наведено на рисунку 3.

Графік профілю n(z) відображає ступінчасту зміну показника заломлення вздовж товщини структури – кожен 
«ступінь» відповідає окремому шару з фіксованим показником заломлення. Це відображає дискретну будову 
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багатошарового матеріалу. Графік спектра пропускання T(λ) демонструє, як залежить пропускання світла через 
структуру від довжини хвилі. На графіку спостерігаємо максимуми і мінімуми, які відповідають резонансам та 
інтерференційним ефектам у шарах.

На завершення, системою було автоматично згенеровано рекомендації щодо оптимізації багатошарової струк-
тури у JSON форматі.

{
	 “optimize_layers”: [
	 {
		  “layer_index”: 1,
		  “recommendation”: “match_quarter_wave_condition”,
		  “target_wavelength_nm”: 600,
	 	 “recommended_thickness_nm”: “approx λ/(4n)”,
	 	 “notes”: “Узгодити товщину шару з чвертьхвильовою умовою для конструктивної 
інтерференції”
	 },
	 {
		  “layer_index”: 2,
		  “current_thickness_nm”: 50,
		  “recommended_thickness_range_nm”: [75, 100],
		  “reason”: “increase_field_localization”,
	 	 “notes”: “Збільшити товщину шару з найвищим показником заломлення (n=2.0)”
	 }
],
	 “add_intermediate_layer”: {
		  “between_layers”: [2, 3],
		  “recommended_refractive_index”: 1.7,
		  “recommended_thickness_nm”: 30,
		  “reason”: “reduce_reflection_due_to_index_contrast”,
	 	 “notes”: “Вставити проміжний шар або реалізувати градієнтний перехід”
	 },
	 “broadband_optimization”: {
		  “target_range_nm”: [400, 800],
		  “approach”: “geometry_optimization”,
		  “reference_wavelength_nm”: 600,
		  “adaptive_methods”: [
		  “genetic_algorithm”,
		  “spectral_T_weighting”

Рис. 3. Профіль показника заломлення (А) та спектр пропускання багатошарової структури (Б)
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	 ],
	 “notes”: “Оптимізувати геометрію структури або використати адаптивну оптимізацію з 
урахуванням спектральної чутливості”
	 }
}

Аналіз рекомендацій, сформованих системою, показує, що для посилення резонансної поведінки доцільно 
узгодити товщини шарів із умовою чвертьхвилі, тобто di ≈ λ/(4ni). Це сприятиме покращенню конструктивної 
інтерференції у заданому спектральному діапазоні. Мінімізація втрат може бути досягнута шляхом збільшення 
товщини шару з найвищим показником заломлення (n = 2.0), який наразі становить лише 50 нм; його розширення 
до приблизно 75–100 нм дозволить підсилити локалізацію електромагнітного поля в цій області. Для зменшення 
відбиття на межі між шарами із суттєво різними показниками заломлення, зокрема між n = 2.0 та n = 1.7, доцільно 
застосовувати проміжний шар або реалізувати плавний градієнтний перехід. Щоб забезпечити ефективну роботу 
структури в широкому спектральному діапазоні 400–800 нм, рекомендовано використовувати багатошарові ком-
бінації з геометрією, оптимізованою відповідно до середньої довжини хвилі (приблизно 600 нм), або застосувати 
адаптивні методи оптимізації, наприклад, генетичні алгоритми з урахуванням спектральної залежності коефіці-
єнта пропускання T(λ).

Демонстрація адаптивного керування параметрами сітки. У ході чисельного моделювання система авто-
матично адаптує густину сітки залежно від спектральних особливостей структури. Зокрема, в діапазонах з різ-
кими змінами коефіцієнта пропускання (наприклад, поблизу резонансів) сітка автоматично згущується, що забез-
печує підвищену роздільну здатність без необхідності глобального зменшення кроку дискретизації. Водночас 
у спектрально стабільних ділянках сітка розріджується, що дозволяє зменшити обчислювальні витрати. Такий 
адаптивний підхід забезпечує баланс між точністю та ефективністю й демонструє перевагу гібридної інтелекту-
альної системи над класичними методами з фіксованими параметрами.

Оцінка точності роботи системи. Запропонована гібридна інтелектуальна система забезпечує підвищену 
точність чисельного моделювання завдяки інтеграції адаптивних алгоритмів управління параметрами дискрети-
зації, гармонік і структури розрахунків. При моделюванні спектру пропускання багатошарової структури в діа-
пазоні 400–800 нм середнє відхилення результатів від еталонного розв’язання склало менше 1.2 % для гібридної 
системи проти понад 4.5 % без використання адаптації. Результати порівняння наведено на рисунку 4.

Рис. 4. Порівняння адаптивної системи та без використання адаптації

Аналіз рис. 4 відображає те, що у разі використання фіксованих параметрів без адаптації виникає недостатня 
роздільна здатність у критичних ділянках спектру, зокрема поблизу резонансів. Це призводить до спотворення 
форми піків та неточностей в оцінці максимумів і мінімумів пропускання. Натомість гібридна система автома-
тично підвищує точність у діапазонах з різкими змінами, таких як області зі стрімким градієнтом фазового зсуву 
або вираженими піками, і водночас оптимізує обчислення в менш чутливих зонах. Це забезпечує суттєве покра-
щення точності без істотного збільшення обчислювальних витрат. Узагальнені дані порівняння класичного під-
ходу та гібридної інтелектуальної системи для чисельного моделювання спектральних характеристик багатоша-
рових структур наведено у таблиці 1.
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Таблиця 1
Порівняння класичного підходу та гібридної інтелектуальної системи

Критерій Класичний підхід 
(TMM з рівномірною сіткою) Гібридна інтелектуальна система

Точність у зоні вузьких резонансів Обмежена або потребує дуже високої 
дискретизації Висока завдяки локальному згущенню сітки

Обчислювальні витрати Високі при збереженні точності Значно нижчі (в 3–5 разів) через адаптивну сітку

Адаптивність до зміни параметрів моделі Низька, потребує повного перерахунку Висока, через навчання нейромережі на 
варіативних даних

Стійкість до варіацій умов моделювання Обмежена, особливо в умовах невизначеності Висока, модель зберігає збіжність і точність

Гнучкість у застосуванні до нових задач Низька, потребує переналаштування та адаптації Висока, модель масштабується та навчається 
повторно

Швидкодія при великій кількості шарів Знижується експоненційно Підтримується за рахунок оптимізації структури
Інтеграція з іншими методами (FEM, 

RCWA) Ускладнена Пряма підтримка через модульність та 
адаптивні блоки

Таблиця демонструє явні переваги гібридного підходу у випадках, коли потрібна точність, гнучкість і обчис-
лювальна ефективність у змінних умовах або при моделюванні складних багатошарових систем. Таким чином, 
гібридна архітектура демонструє стабільно вищу якість результатів при зменшенні обсягу ручного налаштування, 
що робить її ефективним інструментом для широкого класу задач оптичного моделювання.

Обговорення результатів. Проведене чисельне моделювання з використанням гібридної інтелектуальної сис-
теми, яка поєднує метод матриці передачі (TMM) з адаптивною багаторівневою сіткою та нейромережевими під-
ходами до оцінювання похибок, підтвердило доцільність інтеграції класичних та інтелектуальних методів у зада-
чах спектроскопічного аналізу багатошарових структур.

Порівняння результатів моделювання з використанням класичних підходів (зокрема TMM з рівномірною дис-
кретизацією) і запропонованої гібридної інтелектуальної системи показало, що остання суттєво перевершує тра-
диційні методи за низкою ключових параметрів. По-перше, завдяки локальному згущенню сітки в області вузь-
ких спектральних резонансів, модель демонструє вищу точність розрахунків: вона здатна детально відтворювати 
особливості спектральної структури, які при рівномірній дискретизації або втрачаються, або потребують значно 
більшої кількості обчислювальних точок. Це дозволяє уникнути глобального перевантаження сітки, зберігаючи 
високий рівень деталізації лише там, де це необхідно. По-друге, адаптивне управління роздільністю суттєво 
знижує обчислювальні витрати: експериментальні оцінки показали скорочення часу моделювання у 3–5  разів 
порівняно з класичною схемою. Такий виграш зумовлений тим, що модель не витрачає ресурси на надмірну 
деталізацію у ділянках з незначними змінами параметрів, зосереджуючи обчислення лише в областях із висо-
ким градієнтом. Крім того, поєднання фізичного моделювання з нейромережею, навченою на великій кількості 
варіативних сценаріїв, забезпечує підвищену стійкість та збіжність результатів навіть за умов варіювання вхідних 
параметрів або при зміні структури багатошарової системи. Це дозволяє моделі гнучко адаптуватися до нових 
фізичних ситуацій без потреби повного переналаштування, що є критично важливим у задачах реального часу або 
при обробці експериментальних даних.

Таким чином, результати дослідження підтвердили доцільність використання гібридної інтелектуальної сис-
теми в прикладних задачах спектроскопії та моделювання процесів у багатошарових структурах. Запропонована 
архітектура може бути рекомендована для задач, де необхідне забезпечення балансу між високою точністю та 
ефективністю чисельного аналізу.

Висновки
Запропонована гібридна інтелектуальна система демонструє високу ефективність для задач автоматизова-

ного керування чисельним моделюванням, зокрема у контексті аналізу багатошарових структур методом RCWA. 
Основними перевагами підходу є гнучкість в адаптації до різних типів задач, можливість автоматичного підбору 
параметрів, а також суттєве скорочення витрат обчислювальних ресурсів завдяки інтеграції машинного навчання, 
оптимізаційних модулів і керуючого агента.

Подальший розвиток системи передбачає розширення її функціоналу на мультифізичні задачі, де поєднуються 
кілька фізичних процесів (наприклад, теплопровідність, механіка і електромагнетизм). Перспективним напрямом 
є також впровадження паралельних обчислень для прискорення розв’язання великомасштабних задач і масшта-
бування системи в умовах високопродуктивних або хмарних обчислювальних платформ. Це відкриває шлях до 
створення автономних високоточних цифрових інструментів для підтримки наукових досліджень і інженерного 
проєктування.
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