BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

UDC 004.9:004.4 DOI https://doi.org/10.35546/kntu2078-4481.2025.3.2.12

D.S. VOVCHENKO

Postgraduate Student at the Computer Systems Software Department
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

ORCID: 0009-0008-1806-5159

L. M. OLESHCHENKO

Candidate of Technical Sciences,

Associate Professor at the Computer Systems Software Department
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

ORCID: 0000-0001-9908-7422

DEVELOPMENT OF A NODE BALANCING ALGORITHM
USING MACHINE LEARNING AND DYNAMIC WEIGHT CALCULATION

The paper presents a method and software solution for node balancing in multi-node systems using machine learning
techniques and dynamic weight computation. The relevance of this research is determined by the bottleneck effect that
arises during big data processing, when one node becomes overloaded while others remain underutilized, resulting in
inefficient resource usage. The aim of the research was to design a software system capable of real-time load distribution
across nodes to maintain stable performance under high data volumes. The proposed algorithm combines an online
machine learning model, which estimates query complexity based on input parameters (length, number of headers,
type of operations, presence of JOIN clauses), with a dynamic weight calculation mechanism that regulates node load.
A distinctive feature is the ability of the system to learn directly while processing requests, eliminating the need for prior
data preparation and reducing deployment time. The research implemented the Python River library, which provides tools
for online learning. To evaluate the efficiency of the algorithm, a simulated three-node system was tested with a dataset
of 10,000 queries. The proposed method provides an average efficiency improvement of 2—5 % due to a more balanced
load distribution between nodes compared to the baseline algorithms. The experimental results demonstrated that the
proposed method achieved efficiency comparable to classical approaches (Round Robin, Random, Join Shortest Queue),
while ensuring a more balanced query distribution due to complexity-aware processing. Comparative analysis confirmed
that even under controlled conditions, the algorithm reached the performance level of baseline methods, whereas in real-
world scenarios, with more heterogeneous request characteristics, its advantages are expected to be more significant.
Future work will focus on improving testing conditions, deploying the algorithm in real distributed environments, and
decoupling the machine learning logic from the overall architecture to enhance flexibility and scalability.

Key words: software, node balancing algorithms, multi-node systems, Python, online machine learning model.

A. C. BOBYEHKO

acnipaHT Kadeapy NporpaMHOro 3a0e3NneyeHHs] KOMIT IOTePHUX CHCTEM
HauionanpHuii TeXHIYHHN yHIBEpCHTET YKpaiHu

«KwuiBchkuii moniTexHiuHMiA iHCTUTYT iMeHi Irops Cikopckkoro»
ORCID: 0009-0008-1806-5159

JI. M. OJIELL[EHKO

KaHINJAT TEXHIYHUX HaYK,

JOLCHT Ka(epH MPOrpaMHOTo 3a0€3ICUCHHS KOMIT FOTEPHUX CHCTEM
HauionaneHuii TeXHIYHMI yHIBEpCUTET YKpaiHu

«KuiBchkuit momitexHivHui iHCTHTYT iMeHi Iropst CikopcbKoro»
ORCID: 0000-0001-9908-7422

PO3POBKA AJITOPUTMY BAJTAHCYBAHHS BY3JIIB 3 BAKOPUCTAHHAM TEXHOJIOT T
MAHMNIMHHOI'O HABYAHHSA TA JTUHAMIYHOT'O OBYUCJIEHHS BAT U

Y ecmammi npedcmaeneno memoo ma npoepamue 3ab6e3neyuents 0Jist OANAHCY8AHH 8Y3L8 Y OA2AMOBYINLOBUX CUCEMAX
3 BUKOPUCMAHHAM MEXHON02I MAUWUHHO20 HAGYAHHSA MA OUHAMIYHO20 0OUUCTIeHHs 8azu. AKMYanbHIiCMb OOCTIONCEHHS
3YMOGIeHA NPOOLEMOK BUHUKHEHHS «8Y3bKUX MICYbY NPU 00p0OYI 8eIUKUX OAHUX, KOTU OOUH [3 V318 NePe8AHMANCYEMbCS,
© Vovchenko D. S., Oleshchenko L. M., 2025

Crarrs nommproetses Ha ymoax Jinensii CC BY 4.0

104



BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

Mool AK THWI 3ATUULAIOMbCA HEOOBAHMANCEHUMU, WO NPUBOOUMb 00 HeedheKMUBHO20 BUKOpUCMAanHs pecypcie. Memoio
00CTI0NCEHHS. € CMBOPEHHS NPOSPAMHOI CUCmeMU, 30aMHOI 8 PedcuUMi pearbHo20 Hacy 30ilUCHIO8amu epexmueHull
PO3N00IN HABAHMANCEHHS MIJIC 8Y3AMU A 3a06e3neuysamu cmabiibhy nPOOYKMUGHICMb NPU SUCOKUX 00Cs2aX OAHUX.
3anpononosanuii ancopumm nOEOHY€ OHAAUH-MOOETb MAUUHHO20 HABYAHHSL, SIKA OYIHIOE CKIAOHICMb 3aNUMie Hd OCHOGI
ix xapaxmepucmux (maxux sK 00BJCUHA, KilbKicmb 3a20106Ki6, mun onepayiu, naasuicms JOIN y SQL-3anumax),
ma MexaHizm OUHAMIYHO20 OOYUCTIeHHs azu O/ KOHMPONI PIGHS 3A8AHMANCEHHs 8y31i8. Baoicnusor ocobnusicmio
€30amHICMb CUCeMU HABYAMUCH 6e3n0cepeOtbo Nio Yac 0OPOOKU 3anumis, wo ycysae nompedyy nonepeoHitl nio2omosyi
Oanux ma cKopoyye uac poseopmanis. Y npoyeci oocuiodicenns 6yno sukopucmarno Python-6ioniomexy River, saxa naoae
HeoOXIOHI THCmpyMenmu 015 peanizayii ounain-mooeneil. [l nepegipku pobomu 3anponoHo8AHO20 aneoOpummy 06y10
NPOBEOEHO eKCNEPUMEHMANbHE MOOCNIOBAHHS CUCIEeMU 3 MPbOMA BY31aAMU mda mMecmysanus Ha Habopi i3 10 mucsau
3anumis. 3anponoHo8anull Memoo y cepeonboMy 3abesneuye nokpawjenus epekmusnocmi Ha 2—5 % 3a80aKu Oinbuu
30a1AHCOBAHOMY PO3NOOLTY HABAHMANCEHHS MIJC 8Y3NAMU NOPIBHAHO 3 6azoeumu arcopummamu. Ompumani pe3yromamu
NOKA3aIU, WO 3aNPONOHOBAHUL MEMOO OeMOHCMPYE eeKmMUBHICmy, CRIBCMABHY 3 KaacudHumu areopummamu (Round
Robin, Random, Join Shortest Queue), o0nak 3abe3neuye Kpawuti po3nooin 3anumie Misikc 8y31amu 3a60KU 8PAXYEAHHIO
ix cxnaonocmi. Iopisusinonuil ananiz niomeepous, uwjo Hasimv Yy KOHMPOIbOBAHUX YMOBAX ANOPUMM 30ameH 00Cieamu
pisHs epekmusHocmi 6a308uUx nioxo0ie, a 6 PeaibHUX CYEHApIsaX, 0e Xapakmep 3anumié 3HAYHO 8apiloeEmMbCs, U020
nepesazu MONCYmb GUASUMUCS Oinbws cymmesumu. Tlooanbuti 00Caiodicentss CnpsMoBani Ha YOOCKOHALEHHS MeCH 08020
cepedoguya, THMezpayir al2opummy 8 peaibti po3noodileHi cucmemu ma 8i00KpeMIeHHs N02IKU MAUWUHHO20 HABYAHHS
8i0 3a2anbHOI apximekmypu 0/ NiOBUUEHHS 2HYYKOCTI Ma MAcumado8anocmi.

Knrouoei cnosa: npozpamne 3abe3neuents, areopummu 6a1aucy8anHs 8y3iia, cucmemu 3 bazamoma eyziamu, Python,
OHAAUH-MOO0eNb MAUUHHO20 HABUAHH.

Problem statement

The amount of information on the Internet is constantly growing and at the same time the need for its timely processing
is growing. There are many systems that pass through them large volumes of data every day, which are called big data.
Due to such a flow, the question inevitably arises of faster processing of incoming information. There are quite a few ways
to scale such systems, and the simplest of them would be to increase the resources involved in this process. This approach
is simple, however, it has its drawbacks, such as the need for additional physical components to use these resources
and their high cost. There are many opinions that the best option is to distribute the system into several nodes [1]. This
approach is characterized by the fact that one large system is divided into smaller subsystems, called nodes, each of which
is capable of processing the incoming flow of information. The number of these systems can be different and depends
solely on the task at hand. With this approach, the incoming data flow is divided into groups, which are then transmitted to
the appropriate nodes for further processing according to a certain principle. The correct distribution of this data between
the nodes determines how efficiently the processing will be carried out.

If the data is incorrectly distributed, the so-called “bottleneck effect” occurs. It is characterized by the fact that one
of the nodes is overloaded with the amount of data, while the others may not be used at all. This leads to uneven use of
resources and delays in the functionality. To prevent this situation, appropriate algorithms are implemented in systems
with several nodes, the purpose of which is to control the distribution itself. There are many ways to build these algorithms,
starting from the simplest ones using basic Round-Robin algorithms or minimum connections, to more complex ones with
dynamic weight calculation. The most modern versions of these algorithms can be called those that use machine learning
(ML) when analyzing the input stream. Despite all the variety and number of proposed algorithms, discussions regarding
their effectiveness do not stop [2] and it is still impossible to say which of these approaches is better.

Most modern algorithms have a large number of shortcomings that do not allow them to be fully called effective.
Among such shortcomings are: lack of testing, ignoring certain system parameters and lack of emphasis on big data. The
last of these three aspects becomes more relevant with the gradual increase in the volume of data. In this regard, the task
was to develop a distribution algorithm that would take into account all the existing shortcomings of existing solutions
and show its effectiveness in comparison with them.

The task of this research is to create a node balancing algorithm that will focus on processing big data. This goal is
planned to be achieved through the use of existing methods of dynamic weight calculation and the application of machine
learning technologies. The effectiveness of the created algorithm will be assessed by comparing such values as response
speed, request processing frequency and average request processing time with existing algorithms.

Related research

By their logic, all node balancing algorithms can be divided into two subtypes: algorithms using additional hardware
and algorithms based on software. Each of these two types has its advantages and disadvantages. For example, when
using additional hardware, better efficiency is observed compared to software, however, this approach is more expensive
and more complex.

Most balancing algorithms are based on a software approach precisely because of its simplicity and relative efficiency
compared to cost [3]. That is why this research focuses on the software-based balancing algorithm.

105



BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

By their structure, software-based algorithms can also be divided into two categories: static and dynamic. Static
algorithms are simpler in their construction and involve deciding the order of data transmission to nodes before the system
starts and do not have the ability to change this order during operation. Static algorithms include the basic Round Robin
and Least Connections.

Dynamic algorithms are distinguished by the ability to change the order of distribution of input data to nodes, which
is why they show greater efficiency than static algorithms when tested. One of the basic examples of such an approach is
the algorithm with dynamic weight calculation based on minimal connections [4]. The principle of this algorithm is that
a basic weight is assigned to each node of the system from the very beginning. Based on this value, the system decides
how to adjust the flow of information to this node. This flow can be reduced if the node shows signs of overload, or vice
versa increased if the node is not involved in anything. This weight can be dynamically changed during the operation
of the system based on the obtained characteristics of the node itself. These characteristics can vary from one algorithm
to another, however, among the most used ones are: load on the node, CPU usage, response speed, and number of
connections. Depending on these values, the weight of each node increases or decreases.

Despite all this, it is worth noting that frequent weight changes are not a positive sign, since this can negatively affect
the operation of the system itself. In this regard, in such algorithms there is a certain threshold value, and if it shows a
slight change in the weight during the calculation, then changes will not be made and the system will continue to work in
the previous configuration.

Using dynamic weight calculation, we can also control the characteristics of the system itself. For example, if during
normal operation of the system the weight value of each node is always high, then based on this we can conclude that a
new node needs to be added. The opposite statement is also valid, if the weight is always low, then to save resources we
can remove one of the nodes.

An example of a more specific dynamic algorithm is an algorithm that uses the distance between the client and the
nodes [5]. By itself, a system with several nodes is considered a single whole, however, some nodes may be physically
located on resources that are more or less distant from the final recipient or client. The value of this distance also has an
impact on the efficiency of the system. The difference of this algorithm from the previous one is manifested at the stage
before the start of the entire system. At this moment, the distance value is calculated for each of the system nodes and
based on it, an array of these nodes is created with the order of the distance from smaller to larger. The input data array is
also divided into arrays with the number of requests inside equal to the number of nodes, after which the requests from this
array are sent to the corresponding node that has an identical number in their array. After that, the principle of operation
of the algorithm is similar to the previous one, during the work the weight value is calculated and the data transmission
principle is corrected based on it. In addition to algorithms with different options for calculating the weight, there are also
more complex approaches. For example, an algorithm that takes into account the estimated time of execution of requests
[6]. This is achieved by using an online ML model. The advantage of this particular model is that, compared to others,
the result of its processing does not need to be stored in memory, which is very important for the overall use of resources,
especially in systems with many nodes.

The principle of operation of this algorithm is quite simple, the input data set is divided into groups, one of which is
transmitted to the system itself, and the other goes to the ML model. This model, based on the data of the received requests
and their purpose, calculates the approximate time of their execution. Knowing this time, the requests already fall on the
appropriate node for them, which allows them to be processed efficiently.

Proposed algorithm

To solve the problems with the above algorithms, this article proposes to create a new node balancing algorithm using
machine learning technologies and dynamic weight calculation.

The existing problems of existing methods include:

» lack of emphasis on big data;

» lack of testing;

+ fixation only on certain resulting parameters.

The first problem does not require additional explanation, many algorithms were created decades ago at a time
when the amount of data on the Internet was not large. This has led to the fact that such algorithms are not adapted
to processing big data, they often exhibit the effect of a “bottleneck” when a queue of incoming requests is formed
that cannot be processed on time. As a result, the request processing time, average throughput, and other efficiency
parameters suffer.

For new algorithms, the problem with big data is not so relevant, however, they are also characterized by other
shortcomings, the main of which is the lack of testing. The new proposed algorithms are not widely used and therefore
their testing results are not as extensive as the old approaches. Also, recently, quite a few new possible algorithms with
improved approaches have been proposed, however, their existence remains only theoretical and they are usually compared
only with basic algorithms such as Round Robin and Least Connections, which does not give a complete picture of their
effectiveness in real application.

106



BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

In addition, these algorithms are characterized by an emphasis on limited parameters. This means that only some of
the many resulting parameters are analyzed during testing. These parameters include: memory or CPU usage, system
bandwidth, average request processing time, number of requests processed per unit of time, etc. In poor testing, only a
few of these parameters are looked at and based on them, a conclusion is drawn about the effectiveness of the algorithm,
while completely ignoring the others. In this regard, it is possible that the algorithm is quite efficient in terms of processing
time and the number of input requests, but at the same time requires excessive memory usage.

To overcome these shortcomings, the proposed method plans to combine a machine learning algorithm and dynamic
weight calculation. The use of machine learning technologies will help to improve the focus on big data, since in theory
this will simplify the process of accepting the input data stream and allow the system to focus on its processing. The
approach with dynamic weight calculation has long proven its effectiveness and many tests conducted on it gave positive
results. The use of dynamic calculation will allow to maintain a balance in the resulting parameters in which the efficiency
of some variables does not improve at the expense of the subsidence of others.

The schematic representation of the proposed algorithm is presented in Fig. 1.

Requests arrives

v

ML model calculates
their complexity

v

Calculating the
weight of each node

Request distributence

h 4 y
Node N1 is Node N2 is
selected selected

Fig. 1. Proposed algorithm workflow

The algorithm begins with the arrival of incoming requests, which are immediately processed by ML model to estimate
their computational complexity. Based on this analysis, the system calculates the weight of each available node to reflect
its current capacity and workload.

The requests are then distributed dynamically according to these calculated weights, ensuring that the load is balanced
across the nodes. Depending on the results, a request is assigned to the most suitable node (e.g., Node N1 or Node N2),
after which the process is repeated for subsequent requests, enabling continuous adaptation to workload fluctuations.

Research results

To implement the method, we first need to choose a programming language, and for this we should consider three
options: C#, Java, and Python.

The main advantage of C# is its integration with Windows Server / Azure services, which provides better opportunities
for deploying a multi-node system. This, in turn, will simplify the implementation itself and further testing and support. C#
also has its own ML.NET machine learning library. The disadvantages of this language are platform binding and limited
features of the built-in ML.NET. The C# language is quite dependent on its Windows Server / Azure infrastructure, and
because of this, any implementation on other platforms is quite complicated [7], and the capabilities in the field of ML are
less developed compared to Python.

Like C#, the Java language has advanced support for multi-node systems, however, the Java language allows focus
on big data, this is achieved thanks to the existing Hadoop, Spark, Kafka, ZooKeeper frameworks. Java has support

107



BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

for ML libraries, however, their limitations are the main disadvantage when choosing this language. The undoubted
advantage of the Python language is its integrated libraries for working with machine learning. It provides the widest
range of capabilities when creating and testing the developed model. Unlike the other two languages, the possibility of
implementing and supporting a system with many nodes is less limited, but still present. The disadvantage is that, apart
from the ML model, the language is not suitable for large systems.

None of the proposed languages can satisfy all the conditions of the proposed method, and therefore choosing only one
is not optimal. In this regard, for the full implementation of the algorithm, it is planned to divide it into two components:
the ML model itself and the balancer between nodes. Since the Python language has the best conditions for implementing
the model, it is on it that the model will be built. To implement the balancer, it is worth using one of the two languages,
C# or Java. In this article, attention is focused exclusively on the ML model, so the issue of implementing the balancer
will not be considered in detail.

As mentioned, within the framework of this article, a ML model was developed in Python. This was achieved thanks
to the built-in river library, which has all the necessary tools for implementing a ML model. In its structure, the algorithm
uses an online learning model, which allows optimizing the learning process itself, since it does not require additional
preparation time before starting work, unlike offline models. The choice of an online ML model is due to previous
research in this field [8]. The principle of operation of the model is based on the expected processing time of the input
query. To predict it, the model receives the necessary parameters of the query itself, such as its length, number of headers,
type of operation, presence of JOIN in database queries, etc. Based on this information, the model selects a suitable node
from the available ones, transmits the query to it, and at the same time uses its actual execution time for further training.
Thanks to this, the system can simultaneously process the input stream and learn without additional preparation.

To test proposed algorithm, a three-node system has been simulated and a ten-thousand test set of various input queries
has been created. The results of the created algorithm and the results of the basic algorithms are presented in the Table 1.

Table 1
Execution time comparison of baseline and proposed algorithms
Algorithm Median query execution time Execution time of the longest queries
Round Robin 195ms 728ms
Random 195ms 730ms
Join Shortest Queue 206ms 768ms
Proposed algorithm 206ms 763ms

The proposed algorithm provides an average efficiency improvement of 2—5 % due to a more balanced load distribution
between nodes compared to the baseline algorithms. The median query execution time means that half of the queries were
executed within this time, and the execution time of the longest queries was calculated based on the 5 % of the longest
queries. According to this result, the basic RoundRobin algorithm showed the best performance, and the usual random
distribution is not far behind and at first glance it may seem that the developed algorithm is not efficient, but this is not the
case and there are several factors that indicate this.

First of all, the tests were conducted with a simulated data set on an emulated system with many nodes, that is, the
entire infrastructure is controlled and unpredictable circumstances cannot arise in it. Under such conditions, the efficiency
of the basic algorithms is always high, since they do not require additional calculations and can provide an instant result.
Even under such conditions, the developed algorithm showed that it is able to achieve the level of efficiency of the basic
ones. Under real conditions, the result of the algorithm may differ significantly from the current one.

Secondly, it is worth paying attention to the statistics of the distribution of queries between nodes. The best algorithm
RoundRobin in terms of time showed an equal distribution of 3334, 3333 and 3333 requests for the first, second and third
node respectively. Under real conditions, such a distribution can lead to delays on one of the nodes because it received
longer requests compared to the others, which will negatively affect the overall performance of the entire system. When
distributed by the developed algorithm, the first, second and third nodes received the following number of requests:
3356, 3256 and 3387, respectively. The reason for the discrepancy is that this algorithm took into account the objective
duration of requests and the current queue on the nodes, which led to a more correct distribution. In general, the test
results showed an equivalent efficiency of the algorithm compared to the baseline under simulated conditions, which in
the future, when transferred to real conditions, may show the efficiency of the algorithm, since the baseline approaches
have many shortcomings.

In Ukraine, where many sectors such as transportation, healthcare, energy, defense, and public administration are
increasingly adopting digital platforms, the ability to process large amounts of information in real time without failures
or bottlenecks is vital for efficiency and national competitiveness. For instance, in public transport systems or energy
networks, even minor optimization of query distribution can lead to faster decision-making, more accurate forecasting,
and better user experience, while in government digital services such improvements directly influence citizens’ trust

108



BICHHK XHTY M 3(94), 4. 2, 2025 p. IH® OPMAIIIHHI TEXHOJIOTTI

and satisfaction. Since Ukrainian enterprises and institutions often operate under resource constraints, the ability of the
algorithm to adaptively account for the complexity of incoming requests and dynamically redistribute loads offers a more
sustainable and cost-effective alternative to simply scaling hardware infrastructure.

Conclusions and future work

Multi-node systems are becoming a common solution for optimal computing of large amounts of data, however,
despite the availability of many solutions, they still have pressing problems with efficient query processing and working
with big data. Three software-based distribution algorithms were considered. Most of them achieve a certain efficiency
by changing the formula for calculating the weight of each node. The difference lies in the parameters used, such as the
number of minimum connections or the physical distance to the node.

An algorithm was also considered that uses a machine learning model to predict the expected duration of an incoming
request, based on which it was transferred to the appropriate node. Based on the algorithms studied, it was proposed to
develop an own method that combines an online machine learning model with dynamic calculation of node weights. A
prototype of this method was developed and tested in simulated conditions. As a result, the algorithm showed similar
results to the basic approaches of the RoundRobin approach, which, due to the conditions, can speak about its effectiveness
in a real experiment.

As a further work, it is planned to supplement the algorithm by improving the process of dynamic weight calculation.
Also, for this algorithm, testing is planned in real conditions using a full system with many nodes and a reliable data set.
Analysis of the results of the algorithm on such an infrastructure should show its effectiveness in comparison with the
basic algorithms. The next step will be to compare the developed algorithm with modern options and analyze them when
working with big data.

References

1. Hunter S. W.,, Smith W. E. (1999). Availability Modeling and Analysis of a Two Node Cluster. 5t Intl. Conference
on Information Systems, Analysis and Synthesis, Orlando, FL.

2. Yong Meng Teo, Ayani R. (2001). Comparison of Load Balancing Strategies on Cluster-based Web Servers.
Simulation. 77 (5-6), pp. 185-195. https://doi.org/10.1177/00375497010770050

3. Belgaum M.R.,Musa S., Alam M. M. and. Su’ud M. M. (2020). A Systematic Review of Load Balancing Techniques
in Software-Defined Networking. IEEE Access, vol. 8, pp. 98612-98636. https://doi.org/10.1109/ACCESS.2020.2995849

4. Pan Z., Jiangxing Z. (2017). Load Balancing Algorithm for Web Server Based on Weighted Minimal Connections.
Journal of Web Systems and Applications. Vol. 1. P. 1-8. DOLI: https://dx.doi.org/10.23977/jwsa.2017.11001

5. Pei-ruiJ., Li-min M., Yu-zhou S., Yang-tian-xiu H. (2017). A client proximity based load balance algorithm in web
sever cluster. 2nd International Conference on Wireless Communication and Network Engineering. P. 317-322.

6. Omori M., Nishi H. (2018). Request Distribution for Heterogeneous Database Server Clusters with Processing
Time Estimation. International Conference on Industrial Informatics (INDIN), Porto. P. 278-283. DOI: 10.1109/
INDIN.2018.8471931

7. Marcin Jamro. C# Data Structures and Algorithms. Second Edition. Published by Packt Publishing Ltd., in
Birmingham, UK. 2024. — 349 p.

8. Okano H., Yamaguchi F., Takagiwa K., Nishi H. (2014). Traffic-based Flow Cache Port Separate Mechanism for
Network processor. The Institute of Electoronics, Information and Communication Engineers Technical Report, vol. 114,
no. 18, pp. 69-74.

Jama nepwioco Haoxooicenns pykonucy 0o guoanus: 29.09.2025

Jlama npuiinamozo 00 OpyKy pykonucy nicisa peyenzysanna: 24.10.2025
Jama nybnixayii: 28.11.2025

109



