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АНАЛІЗ ПОПЕРЕЧНИХ КОЛИВАНЬ СТРІЛИ МАНІПУЛЯТОРА 
З ВИКОРИСТАННЯМ МЕТОДУ РЕЛЕЯ

У статті розглянуто задачу визначення основної власної частоти поперечних коливань стріли маніпулято-
ра, змодельованої як пружна балка Ейлера-Бернуллі, встановлена на двох шарнірних опорах. Метою дослідження 
є підвищення точності та інженерної надійності оцінювання динамічних характеристик подібних конструкцій 
шляхом застосування енергетичного методу Релея. Для розв’язання задачі сформовано низку апроксимаційних 
пробних функцій, що задовольняють граничні умови нульових прогинів на кінцях і відображають реальну форму 
коливань. Розглянуто вісім варіантів пробних функцій різної складності – від класичної синусоїдальної до полі-
номіальних, експоненційних та комбінованих форм із варіаційним підбором параметрів. Проведено обчислення 
інтегральних співвідношень для енергії згину та кінетичної енергії, що дозволило визначити частоти власних 
коливань і порівняти їх з аналітично точним розв’язком.

Результати аналізу показали, що використання синусоїдальної пробної функції забезпечує практично точне 
значення основної власної частоти, а наближення за статичною формою прогину та потенціальною функці-
єю дає похибку менш ніж один відсоток. Параболічні та лінійні апроксимації демонструють прийнятну, хоча 
й помітно більшу, похибку близько 11 %. Водночас кубічна та експоненційна форми виявилися недостатньо адек-
ватними, що підтверджується суттєвим перевищенням розрахованої частоти порівняно з точним розв’язком. 
Порівняльна оцінка різних пробних функцій дозволила обґрунтувати вибір найефективніших варіантів для інже-
нерних розрахунків та підкреслити важливість попереднього аналізу кривини пробної форми, від якої залежить 
точність енергетичного методу.

Отримані результати мають практичну цінність для проєктування та оптимізації підіймально-тран-
спортних машин, роботизованих маніпуляторів і кранових систем, де необхідно враховувати вплив динамічних 
навантажень та уникати резонансних режимів. Використання методу Релея з адекватно підібраною пробною 
функцією забезпечує швидке й надійне оцінювання власних частот без залучення складних чисельних моделей, 
що є важливим у початкових етапах проєктування та верифікації конструкцій.

Ключові слова: власні коливання, метод Релея, стріла маніпулятора, пробні функції, динамічний аналіз, інже-
нерне проєктування.
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RAYLEIGH-BASED ANALYSIS OF TRANSVERSE VIBRATIONS IN A MANIPULATOR BOOM 

The article addresses the problem of determining the fundamental natural frequency of transverse vibrations 
of  a  manipulator boom modelled as an elastic Euler–Bernoulli beam supported on two hinged bearings. The aim 
of  the study is to enhance the accuracy and engineering reliability of evaluating the dynamic characteristics of such 
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structures by applying the Rayleigh energy method. To solve this problem, a set of approximate trial functions was 
formulated to satisfy the boundary conditions of zero deflection at the ends and to reflect the actual mode shape of the 
vibrations. Eight variants of trial functions of varying complexity are examined, ranging from the classical sinusoidal 
form to polynomial, exponential and combined expressions with variational parameter selection. Integral relations 
for the bending and kinetic energies were evaluated, enabling the determination of the natural frequencies of vibration 
and their comparison with the analytically exact solution.

The analysis revealed that employing a sinusoidal trial function provides an almost exact value of the fundamental natural 
frequency, while approximations based on the static deflection shape and the potential function produce an error of less than 
one per cent. Parabolic and linear approximations exhibit an acceptable, though noticeably larger, error of about eleven 
per cent. In contrast, cubic and exponential forms proved to be insufficiently adequate, which is confirmed by a significant 
overestimation of the calculated frequency relative to the exact solution. A comparative assessment of the different trial 
functions justified the choice of the most effective options for engineering calculations and emphasised the importance 
of a preliminary analysis of the trial function curvature, on which the accuracy of the energy method depends.

The findings have practical value for the design and optimisation of lifting and transport machinery, robotic 
manipulators and crane systems, where the influence of dynamic loads must be considered and resonant operating 
conditions avoided. The use of the Rayleigh method with an appropriately selected trial function ensures a rapid and 
reliable evaluation of natural frequencies without recourse to complex numerical models, which is particularly important 
at the early stages of design and structural verification.

Key words: natural vibrations, Rayleigh method, manipulator boom, trial functions, dynamic analysis, engineering 
design.

Постановка проблеми
Сучасні гідравлічні маніпулятори (рис. 1), що застосовуються в лісовому господарстві та інших суміжних 

галузях, працюють у складних умовах [1, 2], які характеризуються значними динамічним навантаженням та 
інтенсивністю роботи [3], де від точності прогнозування власних частот та форм коливань залежить надійність 
і довговічність конструкцій. Стріла маніпулятора, яка за своєю природою є гнучкою балковою системою, під 
час роботи зазнає змінних навантажень та динамічних впливів від гідроприводу і транспортованого вантажу. 
Недооцінювання власних частот може призвести до резонансних режимів, перевищення допустимих напружень 
і пришвидшеного зносу, що обумовлює необхідність поглибленого теоретичного аналізу її коливань. Одним із 
ефективних інструментів для оцінки власних частот таких конструкцій є метод Релея, який ґрунтується на рівно-
сті максимальної потенціальної та кінетичної енергій системи.

Рис. 1. Гідравлічний маніпулятор LIV L18.78P для навантажувально-розвантажувальних робіт

Класичні підходи до динамічного розрахунку балок, зокрема точні розв’язки рівняння Ейлера-Бернуллі або 
чисельні методи, забезпечують високу точність, однак потребують значних обчислювальних ресурсів або склад-
них аналітичних перетворень. Тому для швидкої інженерної оцінки першої власної частоти та форми коливань 
залишається актуальним використання варіаційних методів. Серед них метод Релея займає провідне місце завдяки 
поєднанню аналітичної прозорості та практичної ефективності. У науковій літературі метод Релея широко вико-
ристовуються для розрахунків балкових, рамних та оболонкових конструкцій, що підтверджують фундаментальні 
праці у галузі інженерної механіки та варіаційних принципів. Проте для специфічних задач моделювання коли-
вань стріл маніпуляторів, особливо з урахуванням різних апроксимаційних форм коливань, комплексних порів-
няльних досліджень усе ще недостатньо.
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Аналіз останніх досліджень і публікацій
Аналіз динамічної поведінки деформівних систем, таких як стріли маніпуляторів, є фундаментальною зада-

чею у сучасному машинобудуванні [1, 2]. Визначальним чинником такого аналізу є визначення спектра власних 
частот коливань, оскільки ця інформація є вирішальною для запобігання резонансним явищам, проєктування сис-
тем керування та забезпечення довговічності конструкції [4]. Класичний підхід до розв’язання цієї задачі поля-
гає у формулюванні та розв’язанні відповідного диференціального рівняння руху в частинних похідних, що для 
балки Ейлера-Бернуллі є рівнянням четвертого порядку [5]. Однак, отримання точних аналітичних розв’язків 
можливе лише для обмеженого категорії задач з простими геометріями та ідеалізованими граничними умовами.

З огляду на зазначені труднощі, широкого розповсюдження набули варіаційні принципи та методи інженерної 
механіки. Як показано у працях з варіаційного числення [6], задача про коливання може бути переформульована 
з диференціальної постановки в інтегральну. Замість безпосереднього розв’язання рівняння руху, визначається 
стаціонарне значення певного функціоналу, зазвичай енергетичного. Для консервативних коливних систем таким 
є функціонал повної енергії, а відповідний варіаційний принцип – принцип Гамільтона [7, 8]. Зазначений підхід 
характеризується ширшою універсальністю та високим аналітичним потенціалом, оскільки дозволяє працювати 
зі скалярними енергетичними величинами, що значно спрощує математичні викладки, особливо для систем зі 
складною геометрією.

Коли точне знаходження екстремуму функціоналу є неможливим, застосовують прямі методи варіаційного 
числення, такі як методи Рітца, Бубнова-Гальоркіна та Треффца та інші [9–11]. Суть цих методів полягає у апрок-
симації невідомого розв’язку (форми коливань) у вигляді скінченної лінійної комбінації заздалегідь обраних 
базисних функцій. Це дозволяє звести задачу для континуальної системи зі нескінченною кількістю ступенів 
свободи до аналізу алгебраїчної системи зі скінченним числом невідомих.

Метод Релея є одним із перших і найпростішим з прямих варіаційних методів, спеціально розроблених для 
наближеного визначення фундаментальної (найнижчої) власної частоти [12]. Його ефективність та простота зро-
били його незамінним інструментом для швидких інженерних оцінок [13]. Методологічна основа цього підходу 
полягає у тому, що точність отриманого результату критично залежить від того, наскільки вдало обрана апрок-
симаційна функція (пробна форма коливань) відтворює реальну першу моду коливань системи [14]. Хоча метод 
Релея є класичним, дослідження щодо вибору та порівняння ефективності різних класів пробних функцій для спе-
цифічних інженерних об’єктів, таких як стріли маніпуляторів, залишаються актуальними, оскільки дозволяють 
виробити практичні рекомендації для досягнення оптимального балансу між точністю та складністю розрахунків.

Формулювання мети дослідження
Метою цієї роботи є розроблення та обґрунтування методики застосування методу Релея для оцінки дина-

мічних характеристик стріли маніпулятора, зокрема її першої (основної) власної частоти та форми коливань. 
Моделювання проводиться для балки на двох шарнірних опорах. Дослідження зосереджене на визначенні впливу 
вибору пробних функцій на точність розрахунків та на порівняльному аналізі отриманих результатів з метою 
виявлення найефективніших апроксимацій.

Викладення основного матеріалу дослідження
Будь-яка конструкція, наприклад балка на шарнірних опорах (Рис. 2, a), може теоретично набувати різних форм 

деформації (Рис. 2, б). Однак для заданого навантаження реалізується лише один конкретний стан, що забезпечує 
рівновагу (Рис. 2, в). Згідно з принципом мінімуму потенційної енергії, цей унікальний стан деформації відпо-
відає точці екстремуму потенційної енергії. Отже, задача знаходження деформації рівноваги еквівалентна задачі 
варіаційного числення на знаходження екстремуму. Стабільність рівноваги визначається типом екстремуму: стан 
є стійким, якщо потенційна енергія мінімальна.

Рис. 2. Балка на двох опорах навантажена зосередженою силою

Стріла маніпулятора розглядається як пряма однорідна балка Ейлера-Бернуллі, довжиною L з постійною зги-
нальною жорсткістю EI та рівномірною лінійною масою ,m  встановленою на двох шарнірних опорах. На серед-
ину прольоту діє зосереджена поперечна сила P, яка визначає статичну форму прогину, але у власних коливаннях 
враховується лише як попереднє деформування. Для моделювання стріли прийняті такі основні припущення:

1.	 Стріла моделюється як класична балка Ейлера-Бернуллі довжиною L з постійними матеріальними та гео-
метричними параметрами E (модуль пружності) і I (момент інерції поперечного перерізу);

2.	 Малi поперечні переміщення: |w(x, t)|  L, геометрична нелінійність не враховується;
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3.	 Поперечне переміщення (прогин) w(x, t) описується одним просторовим полем, як функція коорди-
нати x і часу t; деформації перетину по товщині нехтуються; поперечні зсуви та інерції обертання перерізу не 
враховуються;

4.	 Відсутність прогину та згинального моменту на опорах: w(0, t) = w(L, t) = 0,  M(0, t) = M(L, t) = 0 ⇒ w′′(0, t) = 
= w′′(L, t) = 0;

5.	 Наявна зосереджена поперечна сила P у точці x = L/2. Ця сила задає статичне прогинання стріли.
З використанням припущень рівняння поперечних коливань балки жорсткістю EI з поперечним навантажен-

ням по довжині q(x, t) = Pd(x - L/2) від зосередженої сили P має вигляд

	
4 2

4 2

( , ) ( , )
( , ),

w x t w x t
EI m q x t

x x

∂ ∂
+ =

∂ ∂
	 (1)

Рівняння (1) в окремому випадку вільних гармонічних коливань w(x, t) = y(x)eiwt дає можливість записати одно-
рідне рівняння четвертого порядку, що описує власні коливання пружної балки згідно з теорією Ейлера-Бернуллі

	 (4) 2( ) ( ) 0,EI x m xy - y =w 	 (2)

де y(4)(x) – четверта похідна функції y(x) за координатою x; ω – кутова частота коливань; y(x) – безрозмірна про-
сторова форма коливань.

Розв’язок рівняння (2) за відповідних граничних умов дає власні функції та власні значення частоти. 
Використання статичної форми ws(x) як пробної форми y(x) у методі Релея покращує апроксимацію першої моди, 
хоча прямого «збільшення/зменшення» жорсткості через поперечне значення P без осьових ефектів не відбувається.

Припустимо, що поперечні коливання w на основі обраної безрозмірної функції коливань y(x) з амплітудою A 
та циклічною частотою w мають гармонічний характер і описуються функцією

	 w(x, t) = Ay(x) sin(wt).	 (3)

Фізичний зміст рівняння (3) відображає прогин балки як добуток амплітуди A, просторової форми y(x) і часо-
вої частини sin(wt). Потенціальну енергію згину балки у момент часу t визначимо за формулою

	 [ ]
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t EI dx wt EI x dx

x
V A ∂ ′′= y ∂ 

= ∫ ∫ 	 (4)

Рівняння (4) відображає енергію, що акумулюється у балці при її згинанні, через інтеграл квадрата кривизни 
прогину, помноженої на жорсткість балки. Максимум енергії відповідає максимальній деформації при макси-
мальній амплітуді коливань. Тоді максимальна потенціальна енергія згину та максимальна кінетична енергія 
коливань рівні
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З рівності Vmax = Tmax отримуємо класичний вираз Релея
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Оцінка справедлива для будь-якої пробної функції y(x), що задовольняє граничні умови. Використаємо 
метод Релея для наближених розрахунків власних частот складних систем, використовуючи відповідно підібрані 
функції y(x).

Для однорідної балки точні власні функції yn(x) й власні частоти wn відомі. Це служить еталоном для пере-
вірки й оцінки точності апроксимаційних функцій, зокрема при моделюванні фундаментальної моди коливань.

	 2 2
4

( ) sin , 1,2,... і .n n

n x EI
x n n

L mL

p y = = w = p 
 

	 (8)

Порівняльний аналіз апроксимаційних форм коливань стріли маніпулятора методом Релея полягав у наступ-
ному. На початку кожну пробну функцію yi(x) нормували для забезпечення їх порівнянності, зокрема використо-
вувалася умова нормування за масою або залишали з амплітудою A, оскільки масштабний множник не впливає 
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на кінцеве значення частоти. Для кожної з пробних функцій yi(x), що задовольняють обов’язкові граничні умови 
шарнірних опорів y(0) = y(L) = 0 та умови гладкості, проводилось обчислення двох ключових інтегралів на від-
різку 0 ≤ x ≤ L: чисельника, що визначає максимальну потенційну енергію системи через квадрат другої похідної 
форми, та знаменника, що відповідає максимальній кінетичній енергії через квадрат самої функції. Ці інтеграли 
підставлялись у формулу співвідношення Релея (7) для отримання оцінки власної частоти wi.

Для підвищення точності параметризованих функцій виконувався чисельний пошук оптимальних значень 
параметрів, що мінімізують коефіцієнт Релея (тобто найбільш точне наближення до істинного значення w1). Усі 
обчислення пробних функцій yi, включаючи знаходження похідних та інтегрування, проводились чисельно мето-
дом трапецій на щільній сітці для забезпечення високої точності. Остаточним етапом було порівняння отриманих 

частот із точним аналітичним значенням для шарнірно опертої балки 2 4( ),exact EI mLw = p  результати якого пред-
ставлені у вигляді відношення частот wi /wexact та відсоткової відносної похибки у відсотках wi/wexact - 1) ⋅ 100 %.

Підвищення точності функції, що описує форму коливань стріли маніпулятора, методом Релея здійснено на 
основі восьми апроксимаційних функцій, кожна з яких задовольняє відповідні граничні умови y(0) = y(L) = 0.

1.	 Синусоїдальна функція y1(x) = sin(px/L).
У цьому випадку отримане значення власної частоти є точним еталонним результатом

4
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Синусоїдна функція y1(x), забезпечує точне значення власної частоти та слугує теоретично обґрунтованим 
еталоном та базовим орієнтиром для оцінки точності апроксимаційних функцій.

2.	 Параболічна функція y2(x) = x(L - x).
Згідно з прийнятою методикою, власна частота набуває значення

5
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, 1,109918. ( 10,99 %).
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Параболічна функція y2(x) забезпечує прийнятну точність (похибка ≈ 11 %) у розрахунку власної частоти 
балки з шарнірними опорами, що робить її доцільною для попередніх інженерних оцінок, де важливі аналітична 
простота та узгодженість з граничними умовами.

3.	 Кубічна функція y3(x) = x(L - x)(1 - 2x/L).
На основі застосованого алгоритму отримано значення власної частоти

c
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, 5,08566 ( 408,6 %).
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Кубічна функція y3(x) виявилася непридатною для точного моделювання першої моди: відносна похибка ста-
новила понад 408 % через надмірний внесок другої похідної [ ]2

2 ( ) ,x′′y  що штучно підвищує жорсткість. Такий 
результат підтверджує, що коефіцієнт Релея дає верхню межу власних значень, а точність залежить від відповід-
ності пробної функції форми коливань.

4.	 Експоненціальна функція

y4(x; a) = (eax/L - 1)(1 - ea(x/L - 1)),  a > 0,

де a – параметр, який підбирається для мінімізації коефіцієнт Релея.
Аналітичні вирази для інтегралів існують, але є громіздкими через експоненційні множники, тому застосо-

вано чисельний підбір параметра a, що забезпечує мінімальне значення коефіцієнта Релея. У чисельному екс-
перименті найкраще значення a ≈ 0,5 було знайдено на граничному значенні сітки та E = 210 ⋅ 109 Па = 210 ГПа, 
I = 42 730 523 мм4 = 4,2730523 ⋅ 10-5 м4, 52,07  кг м,m =  L = 7,0 м. Тоді у межах обраного підходу власна частота 
становить

4
4 103,69 рад с, 1,240024 ( 24,002 %).

exact

w
w +≈

w
≈=

Експоненціальна функція y4 при фіксованому параметрі дала похибку близько 24 %, що значно гірше за сину-
соїдальні та статичній апроксимації. Недостатня узгодженість кривизни з реальною формою прогину зумовлює 
неточність, однак функція має потенціал до збіжності за умови варіаційного підбору параметра a, що робить її 
перспективною для адаптивного моделювання та параметричного аналізу.
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5. Комбінована функція y5(x; b).
Використано пробну функцію, що є лінійною комбінацією синусоїдальної та параболічної форм, де b це ваго-

вий коефіцієнт, що визначається варіаційним методом.

5 ( ; ) sin (1 ) ( ), 0 0.
x

x x L x
L

p y b = b + - b - ≤ b ≤ 
 

У результаті варіаційної мінімізації було встановлено, що оптимальним значенням параметра b є одиниця. Це 
означає, що комбінована функція y5(x; b) з оптимальним параметром b = 1 тотожно дорівнює чистій синусоїдаль-
ній функції y1(x), яка є точним розв’язкам для даної системи. Тоді

5
5 , 1,0.exact

exactw
=w

ww =

Комбінована функція y5, побудована як поєднання синуса й параболи, при варіаційному підборі параметра b 
зводиться до чистої синусоїди, що підтверджує її енергетичну перевагу як найточнішого наближення першої 
моди. Такий результат демонструє ефективність синусоїдальної форми в обмеженому базисному просторі та пер-
спективність комбінованих функцій y5 для моделювання з багатьма базисними елементами.

6.	 Функція y6(x), що відповідає формі статичного прогину.
Нормовану статичну форму прогину балки, навантаженої поперечною центральною силою, представимо 

у вигляді системи рівнянь, де константу C обрано з умови max|y6| = 1.
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У результаті прямого чисельного інтегрування без застосування спрощувальних припущень отримано
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Функція y6(x), побудована як суцільна кусочно-аналітична форма статичного прогину, забезпечила високу 
точність розрахунку власної частоти з похибкою не більше ніж +0,72 %. Це підтверджує ефективність фізично 
обґрунтованих апроксимацій у методі Релея, які поєднують обчислювальну простоту з точністю, достатньою для 
інженерних застосувань.

7.	 Потенціальна функція y7(x).
Функція y7(x), отримана через інтегрування епюри моментів M(h) для балки з центральним навантаженням, 

після відповідного нормування відповідає формі статичного прогину ws(x), а їх використання у чисельному роз-
рахунку забезпечило повну узгодженість результатів y6(x) та y7(x) (з точністю до константи).
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Функція y7(x), побудована через інтегрування епюр моментів, забезпечила високу точність (+0,72 %) розра-
хунку власної частоти, підтвердивши ефективність фізично обґрунтованих пробних форм. Цей підхід забезпечує 
узгодженість статичних і динамічних характеристик, зберігаючи аналітичну простоту.

8.	 Лінійна функція y8(x)
Запропонована функція y8(x), що має аналітично просту форму та задовольняє кінематичні граничні умови, 

є пропорційною параболічному профілю y2(x) з відмінністю лише у сталому множнику.
2

8 ( ) .
x

x x
L

y = -

Оскільки коефіцієнт масштабу не впливає на значення коефіцієнта Релея, нормування форми прогину не змі-
нює результатів оцінки власної частоти, тоді
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Запропонована лінійна функція ψ8 показала прийнятну для попереднього аналізу точність (похибка +10,99 %), 
характерну для простих апроксимацій. Незважаючи на обмежене відтворення кривизни, вона забезпечує фізично 
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узгоджені результати завдяки виконанню граничних умов та незалежності коефіцієнта Релея від масштабування, 
що робить її ефективною у задачах попереднього аналізу та для оперативних інженерних оцінок.

Після обґрунтованого вибору та розрахунку пробних функцій yi, було складено зведену таблицю, яка міс-
тить розраховані власні частоти та їх відношення до еталонного значення wexact = 83,6159 рад/с, а також відносні 
похибки апроксимації (Табл. 1). Для візуальної оцінки якості обраних функцій з використанням Wolfram створено 
програму та побудовано графіки: перший відображає нормовані форми коливань у порівнянні з точною формою 
(Рис. 3, а), що дозволяє проаналізувати їхню геометричну подібність, а другий ілюструє розподіл абсолютних 
відхилень, виявляючи зони найбільшої розбіжності (Рис. 3, б). Цей підхід дає змогу не лише кількісно оцінити 
точність кожної пробної функції, але й виявити систематичні відмінності в їхній поведінці на різних ділянках 
довжини балки.

Таблиця 1
Результати розрахунку пробних функцій yi

Назва пробної функції прогину (y) Позначення (y) wi, рад/с wi/wexact Відносна похибка (%)
Синусоїдальна функція y1 83,6159 1,0000 0
Параболічна функція y2 92,8030 1,1099 +10,99
Кубічна функція y3 425,2421 5,0857 +408,57
Експоненціальна функція (a ≈ 0,5) y4 103,6857 1,2400 +24,00
Комбінована функція (b ≈ 1,0) y5 83,6159 1,0000 0
Статична форма y6 84,2207 1,0072 +0,72
Потенціальна функція y7 84,2207 1,0072 +0,72
Лінійна функція y8 92,8030 1,1099 +10,99

Рис. 3. Графіки оцінки якості обраних функцій

Проведений аналіз апроксимаційних функцій для оцінки першої власної частоти балки на шарнірних опорах 
методом Релея виявив чітку закономірність у точності різних пробних форм. Найточніші результати з відносною 
похибкою менше 1 % отримано для синусоїдальної функції (яка є точним розв’язкам), статичної форми пруж-
ної лінії та потенційної функції прогину. Функції з помірною похибкою близько 11 %, параболічна та лінійна, 
можуть бути прийнятними для попередніх інженерних оцінок. Найменш ефективними виявилися експоненці-
альна (похибка ≈24 %) та кубічна (похибка понад 400 %) функції, що свідчить про їхню непридатність для точної 
апроксимації форми коливань. Значущим результатом є те, що оптимізація комбінованої функції призводить до 
її зведення до чистої синусоїди, що підтверджує енергетичну оптимальність останньої. Таким чином, для моде-
лювання стріли маніпулятора найефективнішими є синусоїдальні та статичні функції, які забезпечують високу 
точність при збереженні фізичної достовірності моделі.

Висновки
Проведене дослідження підтверджує ефективність методу Релея як надійного засобу для оцінки основної 

власної частоти коливань стріли маніпулятора, змодельованої у вигляді балки з шарнірними опорами. Ключовим 
чинником точності розрахунків є вибір пробної функції: апроксимації, що узгоджуються з реальною формою 
коливань, забезпечують мінімальні відхилення від точного аналітичного розв’язку. Порівняльний аналіз восьми 
апроксимаційних форм показав, що найвищу точність забезпечують синусоїдна функція, комбінована форма 
з варіаційним налаштуванням та потенціальна функція згину, отримана через інтегрування епюри моментів. Ці 
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функції демонструють високу узгодженість з фізичною природою деформації та математичною моделлю, що 
робить їх доцільними для практичного застосування в інженерних розрахунках і подальшому моделюванні дина-
міки маніпуляторних систем.
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