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INTENSITY CORRECTION IN SIDE SCAN SONAR IMAGES.
METHODS OVERVIEW

The use of sonars, particularly side-scan sonars, in underwater research dates back to the mid-20th century. Due
to their relative affordability, ease of operation, and high efficiency in seabed visualization, these devices have become
indispensable tools in hydrography, marine archaeology, environmental monitoring, and search-and-rescue operations.
However, the processing of sonar images (sonograms) presents a number of challenges caused by signal distortions. The
main types of such artifacts include intensity non-uniformities, stripe noise, geometric distortions, and residual effects of
imperfect time-based intensity compensation. Given the complexity of acoustic propagation in underwater environments
and the variability of sensor configurations, there is currently no universal method for intensity correction that performs
effectively across all scenarios. This study presents a structured review of existing methods for correcting intensity in side-
scan sonar images developed over recent decades. Emphasis is placed on their algorithmic implementation, suitability
for real-time processing, and effectiveness in constructing high-quality sonar mosaics. Particular attention is paid to the
analysis of the causes of intensity variation, including the phenomenon of brightness falloff across the swath, repetitive
stripe noise, time-varying gain, and residual intensity anomalies in the time domain. The review covers a range of models
and approaches, including empirical smoothing techniques, multivariate regression, local normalization, hybrid filtering
strategies, and methods based on physical models of acoustic scattering. A proposed classification framework allows for
the organization of these approaches according to several criteria: model type (empirical, physical, machine learning),
underlying assumptions, constraints under real-world conditions, and the types of metrics used for quality evaluation.
The potential of each method to be adapted for tasks such as automatic object detection and the construction of accurate
seafloor morphology models is also explored. This material may be valuable both for engineering practitioners involved
in applied sonar processing and for researchers seeking advanced algorithms for sonogram enhancement and develop
adaptive computer vision systems for complex underwater environments.

Key words: side-scan sonar, sonogram, intensity correction, sonar mosaic, stripe noise, digital signal processing,
adaptive algorithms, deep learning, computer vision.
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KOPEKUIA IHTEHCUBHOCTI 305PA’KEHb COHAPA BOKOBOI'O OIIAAY. OIJIAd METOAIB

Buxopucmanns conapie, 30kpema conapie 60k068020 02150y, ¥ NIOBOOHUX OOCTIONHCEHHAX Depe C8ill NOYamoK i3 cepeo-
unu XX cmonimms. 3a605aKu c80itl 6iOHOCHIL Oele8U3HI, NPOCMOomi eKCnryamayii ma UCoKitl e(hpeKmugHocmi y 8i3yai-
3ayii MOPCbKO20 OHA, Yi NPUCMPOT CIMANU HEGI0 EMHUM THCMPYMEHMOoM 2i0pozpadii, MOpCbKOL apxeoodii, ekoio2iuHo2o
MOHIMOPUHEY Ma NOULYKOBO-PANTY8ATbHUX onepayit. OOHak 06pobKa coHo2pam cynposooAICYEMbCs HUIKOIO CKAAOHOUIE,
3YMOGIEHUX CNOMBOPEHHAMU CUSHANY. []0 OCHOBHUX MUNIE MAKUX apmepaxmie Haiexcams HeoOHOPIOHOCII iHMeNCUs-
HOCMI, CMY208Ull ULYM, 2eOMEMPUYHI BUKPUBLEHHS MA 3ATUWKOBI HACTIOKU HeOOCKOHANIOI KoMneHcayii 4acogoi 3aneic-
Hocmi cuenany. Bpaxogylouu ckaaoHicms aKyCmuuHux 61acmugocmell cepedosuya ma eapiamusHicms Kongizypayii
CeHCopig, YHIBEPCATIbHO20 Memooy KOpeKyii iHmeHcusHocmi, AKuil 66 Ou epeKmusHUM y 8CiX CYeHapisax, Hapasi He ICHYE.
Y yvomy oocnioscenni npedcmagneno cucmemamuzo8anull 0210 ICHYIOYUX Memoodie KOpeKyii inmeHCcUugHocmi 300pa-
Jicelb coHapa 60K06020 0211510y, Wo OYIU Po3podIeHi 8NPOO0BIHC OCMAHHIX Oecamuiimb. AKyenm 3poONeHo HA IXHIO
aneopummIiyHy peanizayiio, 3aCmoCOGHICIb ) PEAIbHOMY YACi Ma epeKMUGHICMb Y KOHMEKCMI N00Y006U 6UCOKOAKICHUX
conapHux mosaix. Ocodnugy yeazy npuoineHo ananizy NPUYUH BUHUKHEHHA 6apiayiti iHMeHCUBHOCMI, 30Kpema GerHomeny
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CNAaoaHms ACKpagoCcmi Nonepexk HAnpsamy pyxy HOCis, NOBMOPIOBAHUM CMY208UM WYMAM | 3ATUUKO8UM apmeparmam
KOpeKyii inmeHCcueHOCmi y 4aco8omy 0omeni. Pozensanymo nusky mooenei ma nioxodis, cepeo aKux emMnipudti 321a0x4cy-
6ANLHI MemOoOu, ba2amosUMIpHA pespecisi, TOKAIbHA HOPMANI3ayis, 2IOpuoHi inempayiini cmpamezii ma memoou Ha
OCHOBI Pi3UUHUX MOOenell aKYCMUYHO20 PO3CIIO8aHHs. 3anponoHo8ana Kiacugikayitina cxema 003601ULd CIMPYKNypy-
samu 6i00OMI NiOX00U 3a Kpumepismu: mun mMooeuni (emnipudna, Qizuuna, Mawunne HaAGYAaAHHs), GUXIOHI NPUNYWEHHS,
00MedNCeHHS! 8 YMOBAX PeasibHO20 3ACHOCY8AHHS, A MAKONIC MUN BUKOPUCIOBY8AHUX MEMPUK OJis OYIHKU AKOCMI 0OpOOKUL.
OKpemo po3enanymo nomeHyian KO#CHO20 Memoody woo0o aoanmayii 00 3a0ay agmomamuiHo20 po3nisHA8AHHs 00 €KMI
ma noby0osu mounHux mopghonociunux mooenet Ona. Mamepian modice OYmMu KOPUCHUM 5K OJIsL [HIICEHEPIG-NPAKIMUKIG,
Wo 3aUMaromvcsi RPUKIAOHOI0 0OPOOKOI0 COHAPHUX 300paxceHb, Max i 01s OOCHIOHUKIG, 3AYIKABLEHUX ) NOOALIbULOMY
PO3BUMKY ANOPUMMIE NOKPAUYEeHHSL AKOCMI COHOZPAM MA CMBOPEHHI A0ANMUBHUX CUCTNEM 3 KOMA TOMEePHUM 30poM 075
pobomu y cKAaoOHUX nid8OOHUX YMOBAX.

Knrouoei cnosa: conap 60x06020 02ns0y, coHoepama, KOpeKyis IHMeHCUBHOCII, COHAPHA MO3AiKd, CMY208Ull WM,
yupposa 0bpodKa cucHaNis, a0anMueHi areopummu, IUOUHHe HABYAHHS, KOMN TOMepHUll 3ip.

Problem Statement

In the context of expanding maritime autonomy and the urgent need for scalable, low-cost methods of seafloor
imaging and underwater situational awareness, side-scan sonar (SSS) has emerged as a foundational technology across
civil, scientific, and defense applications. Its ability to deliver wide-area acoustic coverage with high spatial resolution
makes it essential for seabed mapping, marine archaeology, habitat monitoring, infrastructure inspection, and mine
detection missions [1]. However, the practical utility of SSS data is critically constrained by the instability of sonar signal
intensity, which is influenced by distance, incidence angle, seafloor texture, sediment composition, beam directivity,
and sound frequency [2]. These factors cause significant spatial and temporal intensity variation, leading to radiometric
inconsistencies such as across-track falloff, stripe noise, and residual artefacts from time-based gain correction. As a result,
downstream tasks such as mosaicking, automated object detection, and semantic interpretation are adversely affected.

The problem is further compounded by the operational shift toward autonomous platforms such as AUVs, which
require onboard, real-time image enhancement to support navigation, SLAM, and situational response. In such settings,
empirical correction models and fixed-parameter filters — commonly used to compensate for signal degradation — fail
to adapt to rapidly changing environmental and vehicle conditions, resulting in unstable performance and geometric
distortions [3]. Moreover, most classical correction techniques do not scale well with modern mission constraints, where
power, memory, and compute resources are limited and mission duration is long.

Consequently, the applied scientific challenge lies in developing intensity correction strategies that account for the non-
linearity and dynamism of underwater acoustic propagation, while enabling robust real-time integration into low-power
embedded systems. The potential of hybrid methods — combining physical acoustic modeling, contextual metadata from
mission logs, and lightweight machine learning — opens a pathway toward improved radiometric fidelity, more accurate
object segmentation, and more efficient data fusion with other sensing modalities [4]. There is thus a pressing need for
signal-processing solutions that treat radiometric correction not as a secondary enhancement task but as a mission-critical
component of sonar-based perception pipelines in complex, variable underwater environments.

Analysis of Recent Studies and Publications

Current challenges in processing and radiometric correction of side-scan sonar (SSS) imagery are addressed in the works
of P. Blondel, A. Grzadziel, Y. Zhang, X. Ye, J. Zhao, S. Li, A. Burguera, C. Capus, and J. Clarke. These studies examine
a broad spectrum of intensity-formation issues, ranging from sensor-resolution effects and acoustic-shadow artefacts to
seabed composition and propagation physics. The papers by Zhang et al. and Ye et al. compare contrast-enhancement and
brightness-correct algorithms that employ Retinex models and adaptive smoothing over rugged topography, while Zhao,
Liu and co-authors focus on compensating intensity variations driven by sediment heterogeneity and complex bottom
morphology. Other researchers — particularly Burguera, Capus, and Clarke — propose integrated frameworks that jointly
address geometric and radiometric distortions under real-world conditions, from towed arrays to AUV-mounted systems,
and discuss normalisation techniques that support reliable classification and the construction of radiometrically uniform
acoustic mosaics. Despite these advances, most publications tackle isolated facets — such as stripe-noise filtering or
single-pass intensity levelling in controlled environments — leaving the overarching problem of a universal, environment-
adaptive correction algorithm, suitable for real-time onboard execution on autonomous underwater platforms, largely
unresolved and in need of further systematic investigation.

The aim of this study is to provide a structured and comprehensive analysis of publicly available intensity correction
methods for side-scan sonar (SSS) imagery. The research focuses on identifying the underlying models and conceptual
approaches, evaluating their theoretical assumptions, implementation complexity, and real-time applicability, as well as
exploring potential secondary outputs such as improved contrast, noise suppression, or radiometric normalization.

This methodological review is motivated by the practical demands of underwater imaging and is intended to support
engineers and researchers developing sonar data-processing pipelines or seeking directions for further investigation.
Given that many commercial solutions are protected by intellectual property rights and confidentiality agreements,
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the study is deliberately limited to sources from open-access scientific literature. No experimental evaluation or direct
benchmarking of specific methods was conducted, as the emphasis is placed on comparative methodology rather than
empirical performance.

Results

The signal strength of the reflected underwater sound signal has complex dependency on many factors: spherical
spreading of acoustic waves reversely proportional to fourth square of range [1], sound attenuation in water and in
sediment, grazing angle, floor profile, sediment type, other factors like water temperature, pressure, salinity, chemical
composition of water or water currents. From the sonar or vehicle side the factors include sonar geometry, altitude,
beam pattern, calibration and setup, working frequency, sonar movement (roll, pitch, yaw, heave). Acoustic shadows
and reverberations also contribute to different intensity variations. For a comprehensive description and mathematical
modeling of sound propagation see [1, 11]. This makes it difficult to separate backscatter information about the object of
interest (floor profile, object) from other factors. Therefore, the main aim of intensity correction methods is to compensate
for unwanted decay in intensity, while preserving valuable information about seafloor characteristics. The intensity of the
emitted signal is not uniform by direction and depends on the grazing angle (for terminology see, for example, [12]) due
to the physics of sonar construction. Main and side lobes of a sonar form a beam pattern that contributes to sonogram
intensity variations. This non-uniformity is a reason for over- or under-ensonification of some areas as well as stripe noise
due to sonar rolling. Beam patterns can either be modeled theoretically [13], measured empirically based on sonogram
data [14], or related beam function [15] derived and used for intensity correction afterwards.

Dynamic range of side scan sonar can reach more than 100 dB [10] due to the above-mentioned reasons making
sonogram unreadable as-is recorded by the sonar. For this reason sonars and processing software employ a time-varied
gain (TVQ) function that compensates sound decay to reduce the dynamic range to around 40 dB [16] and compose a more
uniform and readable sonar image using logarithmic or another approximation [5, 1]. In general case TVG parameters
must be carefully selected for the sediment type, floor depth and other factors to compensate for sound attenuation more
adequately. Unfortunately, TVG is often implemented on hardware level with little or no possibility of adjustment and
therefore does not account for other factors that may need compensation. Moreover, the function itself may contain
irregularities that bring additional distortion to intensity [17]. Thus, additional compensation of its residuals affecting SSS
images may be needed [18, 19, 20].

Different variation types require different methods of correction. Most of the reviewed methods tackle the first
problem. The second type has little coverage in literature, although some authors claim [9] to have compensated for it as
well. Mosaic stripe noise is addressed in [21] using 2D Fourier transformation. Most of the reviewed methods address
across-track intensity decay (Fig. 1), which is the most common and well-documented type of variation. The near-nadir
overexposure and stripe artefacts illustrated in Fig. 2 are less frequently discussed, although some studies report partial
compensation of these effects [9]. Mosaic-level stripe noise, often resulting from inconsistent swath intensities across
survey lines, is illustrated in Fig. 3 and has been addressed using 2D Fourier-based filtering approaches [21].

Fig. 1. An example of intensity decay with range

The intensity variations make sonograms less readable by humans and cause other hindrances in subsequent image
processing and usage [22]. Ramifications include loss of information in under- or over-ensonified areas, distortion of
distinctive features, poor reception by Al and post-processing software [12], failures in detection and classification [23,
14] of objects and sediment types segmentation [5], unwanted artifacts on mosaics [18, 21] and complicate fusion with
other data from other modalities [16, 19, 4]. This highlights the importance of adequate intensity correction methods that
correspond to sonogram use cases.
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Fig. 2. An example of over-ensonified near-nadir area (bright areas in the middle) and stripe noise
(frequent horizontal lines of various intensity and length)

Fig. 3. An example of stripe noise on sonar mosaic caused by intensity variations [21]

Due to the variety of sonogram applications, the methods of sonar data processing also have significant diversity.
A sonogram is a synthetic image without any reference to “ground truth” that can be seen and evaluated by a human
eye. As formulated by Blondel in [1]: “The “quality” of an image is very subjective... Is a higher contrast necessarily
better? What would be the optimal contrast?”. No single method can be deemed universal or true in the application to
different sonogram use cases. For example, researchers may want to mark different sediment or underwater vegetation
with different shades of gray and that will significantly affect the choice of intensity correction methods. Processing
legacy sonogram data is another use case that sets up requirements for processing methods.

Legacy sonograms, especially recorded on analog media, may not contain complementary information like navigational
data, vehicle or towfish motions, sonar type and calibration. Thus, applicable methods should only use the data present on the
sonogram itself. Some objectives may contradict others like making the image intensity more uniform for better readability
and keeping variations in sediment brightness or acoustics shades for better or object detection and classification. Not every
method reviewed in this research mentions the particular use case it works best for, most of them pretend to be generic.
However, if particular use cases have been specified by the paper author, we will include them in the resulting table.
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Various intensity correction approaches for side-scan sonar imagery are based either on physically informed models of
acoustic propagation and reflection or on statistical and signal-based techniques aimed at achieving radiometric uniformity
under diverse environmental and operational conditions. Ye [4] has split intensity correction methods into six categories:
Time Variant Gain (TVG), Histogram Equalization (HE), Nonlinear Compensation, Function Fitting, Sonar Propagation
Attenuation Model and Beam Pattern. However, some methods like [12], may be classified into two proposed categories.
Our classification will be less strict but more descriptive, outlining the main model or approach of each method: regression
over ping intensity profiles, averaging along or across track, Lambertian model of sound reflection, etc. Several examples

of intensity correction using different methods are shown in Fig. 4 [4].
d} lﬂ
a — original image; b — histogram; ¢ — non-linear compensation; d — function fitting; e — method in [4]

Fig. 4. Comparison of intensity correction in side scan sonar images:

In our subjective opinion, methods that do not use any model, especially those using averaging, are easier to implement
using packages and modules of statistical processing. Moreover, such modules are available in abundance. On the other
hand, module-based methods may produce better results in complicated circumstances.

Every model is a simplified representation of the target objects. With all the complexity of sound emission, propagation,
and reflection underwater, different methods resort to different assumptions and declare various limitations in order to
simplify the modeling process. Most common assumption considers the seafloor to be flat and uniform across-track at a
particular point. This greatly simplifies calculation of grazing angle and other values from altitude and slant range data.
Lambertian assumption (Lambertian law) [1] is another popular assumption with researchers. It states that intensity of
the reflected signal is proportional to cosine of the angle between the incident light and the surface normal, which is a
fairly good approximation in most cases. Other assumptions may include small variation in depth during sonar mission,
uniformity of depth and sediment in some proximity of the calculation point.

Method users must be aware of such assumptions and limitations as they restrict method applicability or cause side
effects when assumptions do not hold. For example, if the seafloor is not flat with high depth and slope variations, it may
cause over- or undercompensation of a signal. Table 1 illustrates the main models or approaches, declared assumptions
and limitations of the reviewed methods.

Sonograms may comprise hundreds of thousands of lines with thousands of data points in each line. This may result
in gigabytes of information produced during relatively short exploration missions. With this regard, computational
effectiveness is a very important criterion of choice when it comes to selecting a proper processing method.

Recent achievements in controlled and unmanned vehicle design pose new requirements for effectiveness of on-board
signal processing units given limited onboard computational power, energy consumption, connection line bandwidth
or absence of timely feedback from the operator. There may also be a need for real-time processing like instant object
recognition during autonomous navigation. Some use cases that presume quick reaction time (mine detection or rescue
missions to name a few) may require real-time or nearly real time performance which also limits the choice of methods.

Few works provide quantitative estimates of computational complexity, some claim effectiveness or suitability for real-
time usage qualitatively. Moreover, processing time greatly depends on implementation details, optimization techniques
and, of course, available hardware. This makes a direct comparison of method’s speed barely possible.

However, we may assume that methods employing averaging techniques prove to be quite effective in terms of
computational resources. On the other hand, effective use of along-track averaging is only possible after the whole mission
or a significant part of it has been completed which prevents them from being used in real-time. One should also consider
the year of publication and advance in computational power and software tools since then. Besides the intensity correction
itself, some of the researched methods offer additional benefits for their users. This can be a calculated sonar beam pattern
or detected sediment type. Table 2 lists the methods’ computational complexity and side outputs.

A range of fundamental and supplementary techniques employed in intensity correction methods has been identified
in the literature. These approaches reflect both physically grounded and data-driven strategies for improving sonar image
consistency. Common techniques include intensity averaging across the track line, along-track direction, or within local
pixel neighborhoods [8, 9, 13]; regression-based modeling of sonar ping data using exponential, spline, or other types of
interpolation [16, 22]; and frequency-domain separation to isolate low- and high-frequency signal components. The latter
can serve purposes such as decomposing illumination and reflectance [4, 9, 22] or mitigating stripe noise artifacts [21].
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Table 1

Methods classification by use case, model, and basic assumptions

(Cubic spline) [16]

— Underwater computer vision

Reference Use case(s) / problem Model or Approach Assumptions and limitations
Al-Rawi 2016 — Fusion Exponential regression of a ping Exponential distribution of signal
(MIRA) [10] — Generic
Al-Rawi 2017 — Mapping Cubic spline regression of a ping Rayleigh distribution of signal

residuals and beam pattern

Anstee 2001 [18] Mosaicking — Along and across track averaging, — Flat floor
separately for near nadir area and remaining | — Altitude does not change much
area — Not been tested with data from lower
frequency side scan sonars
Burguera and — Mapping — Lambertian model — Flat floor
Oliver 2014 [12] — Navigation or SLAM — Sensitivity pattern model by Kleeman — Lambertian assumption
Burguera and — Mosaicing and Kuc
Oliver 2016 [23] — Generic — Beam pattern model
Capus 2004 [19] — Mosaicking —TVG model — Small altitude changes
— Classification — Along-track average — Platform stability with respect to pitch and roll
— Conversion to 8-bit — Beam pattern estimate — Seafloor unchanging in slope across track
— Correction of TVG

Capus 2008 [13] — Mosaicking — Imaging model — Suitable for shallow water and low altitude
— Segmentation — Quadratic function describing the — Errors arise at each course alteration
— Correction of TVG variations in intensity associated with sonar |— Needs a suitable exemplar image for generation
residuals altitude of correction factors.
— Beam pattern model
— Iterative process to separate angular and
range dependent intensity variations
Yet-Chung Chang | — Mosaicking — Average signal intensity for each grazing |- Total back-scattered energy from each ping
2010 [24] — Generic angle should be similar to adjacent pings in the time

— Average energy level of the 20 pings —
Normalizing ping energy levels to remove

series

Clarke 2004 [14]

— Classification

— Combining a number of discrete spatial
frequency bins with average backscatter
strength

— Stack backscatter strength information in
angular bins

— Empirical approach was to estimate beam
patterns

— Flat floor
— Shallow water

(3]

— Sediment variations

Galdran 2017 [25] |- Mapping — Exploiting two-dimensional information | — Simple logarithmic dynamic range
— Generic to estimate and remove intensity compression is applied to compress the received
nonuniformity acoustic signal
— Locally normalizing the intensity in each |— Background intensity follows a normal
region to retrieve a more regular image distribution
Shippey 1994 [20] | — Mosaicking — Histogram normalization to normal — Not ideal for the segmentation task
— Segmentation distribution
— Preserve the characteristic histogram
shape for each sediment
Wilken 2012 [21] | — Mosaicking — 2D Fourier transformation adjusting slope | — Spatial Nyquist sampling criteria must be
— Stripe noise removal angle of the stripe noise and filtering width | fulfilled
— Classification — Sand ripples prone to elimination by the
filtering process
— Data gaps / clipped areas appear smeared or
blurred along all filtered stripe directions
Jianhu Zhao 2017 — Generic — Linear relationship between distortion and | None

sonar altitude

— Average angle—backscatter curves of
individual sediment

— Unsupervised sediment classification
— Angle-related radiometric correction
applied for each sediment

Cervenka 1993 [22]

Mosaicking

— Filter the low spatial frequency
components of the image using Chebyshev
polynomials

— Contrast enhancement through histogram
equalization by balancing local versus
global histogram contribution

— The original image must fit exactly into
a rectangular frame for the method to work
satisfactorily
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End of Table 1

Yifei Liu 2023 [8]

terrain

— Mosaicking
— Classification in rugged

— Multiplicative Attenuation Model

along the vertical direction of the track

model for the echo points.

corrected

— Divide the image into multiple segments

— Image is segmented along the attenuation
direction, and the segmentation intensity
is calculated by using the multiplicative

— Maximum segmentation intensity is taken
as the target intensity, and the non-shaded
points of the image are compensated and

— Seawater is uniform
— Influence of boundary loss is not discussed

Xiufen Ye 2019 [4] | Generic

directly smooth signal intensity
— Mean filter and bilateral filter

— Retinex mean filter or bilateral filter to

None

Li, Shaobo 2022 [9] | Generic

model
— Beam pattern model

illumination component.
— ATV constraint is used to retain

stripe noise

— Lambert’s law and the variational Retinex

— Low-rank constraint to obtain a better

geomorphology features and remove the

— [lluminance component in log domain is
smooth in spatial

— Should be applied to the geometric corrected
SSS image where the water column has been
removed

Table 2
Classification of Methods by Computational Complexity and Side Outputs
Reference Computational complexity / performance Side outputs
Al-Rawi 2016 (MIRA) [10] Within the order O(N), None
N = total number of pixels in the image
Al-Rawi 2017 (Cubic spline) [16] | n/a — The peak of the estimated distribution is related to

the sensor gain
— Can also be used to detect high acoustic reflectance
and acoustic shadows of underwater landmarks

Anstee 2001 [18] “The algorithm imposes minimal processing overheads | n/a
on modern personal computers.” [ Anstee]
Burguera and Oliver 2014 [12] n/a n/a
Burguera and Oliver 2016 [23] n/a Echo Intensity Map
Capus 2014 [19] n/a — Beam pattern model
— TVG residual model
Capus 2008 [13] — Typical processing times for a 2000 x 2000 pixel n/a
image, including resampling, would be between 2 and
15 s depending on altitude variation.
Yet-Chung Chang 2010 [24] n/a n/a
Clarke 2004 [14] n/a — Roll-caused stripe noise removal

Galdran 2017 [25]

“Great computational efficiency, being a good
candidate for a real-time implementation.”
Complexity O(N), N = total number of pixels in the

n/a

image
Shippey 1994 [20] n/a Column histogram for each sediment type
Wilken 2012 [21] n/a Can be applied to non-optimally processed side-scan
mosaics
Jianhu Zhao 2017 [5] n/a Sediment classification

Cervenka 1993 [22] “From a practical point of view, Chebyshev analysis is | n/a
not difficult to perform.”
Yifei Liu 2023 [8] “Exhibits excellent performance in image correction” | n/a

Xiufen Ye 2019 [4]

— Mean filtering suitable for online processing
— Bilateral filtering method is more suitable for offline
processing

Can also be used to enhance low illumination color
optical images

Li, Shaobo 2022 [9]

n/a

Stripe noise removal
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Bottom detection based on altitude measurements or water column analysis is also widely applied [19], although it
presents specific challenges in high-noise environments or areas with abrupt bathymetric variations.

Slant range correction (resampling) is often a prerequisite for precise grazing angle computation or enhanced spatial
averaging [19, 24]. In some methods, sediment classification — either predefined or derived post hoc — is used to improve
reflectivity estimation and aid intensity normalization [20, 5].

Other widely used techniques include histogram leveling [20, 3], outlier filtering using Z-score methods [5], and
Bayesian inference of time-varying gain (TVQ) profiles directly from sonar image data [17]. These tools are not only
useful for intensity correction but also show potential for the development of novel methods or as auxiliary components in
broader image processing pipelines. Several additional methods, while not directly designed for intensity correction, offer
valuable insights into sonar image enhancement. For instance, Nguyen [26] introduced an empirical technique to estimate
beam patterns, and Tamsett [27] proposed a more accurate TVG correction model by dividing the ensonified seafloor
into primary and conjugate zones. He also suggested a method for deriving the sonar’s beam function [15]. Calder [17]
employed Bayesian inference to reconstruct the TVG profile solely from image data and applied it to mitigate residual sonar
artifacts. Completely objective evaluation of intensity correction methods remains challenging due to the lack of a definitive
ground truth in sonar imaging. Nevertheless, various quantitative approaches have been used for performance assessment.
Comparative analysis of multiple methods, such as MIRA versus Dark Channel Prior (DCP), offers direct insights into
algorithmic differences [10]. Histogram-based evaluation focuses on distribution shape, deviation from normality, balance,
and the presence of distinct modes; some studies calculate the coefficient of variation (CV) as a supporting metric [16,
5]. Several standardized and purpose-built metrics have also been proposed. The Sonar Image Quality Evaluation Metric
(SIQEM) [10] provides a domain-specific assessment framework. Structural Similarity Index (SSIM) is used to quantify
perceptual similarity between two images [28], while peak signal-to-noise ratio (PSNR), entropy, standard deviation, and
mean gradient serve as general image quality indicators [4]. Additional metrics such as the Vollrath function, Roberts
function, Brenner gradient, mean gradient, and gray-level difference have been utilized for fine-grained assessments [3, 8].

These evaluation tools can support the benchmarking of new intensity correction methods or comparative studies
across different imaging conditions and datasets.

Conclusion

This study addresses the issue of intensity correction in side scan sonar imagery, an essential task for accurate
underwater analysis and mapping. Given the widespread use of side scan sonar in fields ranging from oceanography
and archaeology to military applications, the need for effective intensity correction methods specific for particular use
cases is paramount. We have identified various reasons for intensity variation in sonograms, including factors like sound
attenuation, sonar beam patterns, time-varied gain (TVG) residuals, and environmental conditions. Through an extensive
literature review and method analysis, we have categorized and evaluated the discovered intensity correction methods
based on their models, assumptions, computational complexity, and practical applications. Our findings highlight that
no single method is universally applicable due to the diversity of sonar images use cases and intensity variation reasons.
While some methods excel in real-time processing scenarios, others may provide more accurate corrections using
sophisticated models at the cost of computational complexity. The results prove that a variety of correction methods are
available covering different variation reasons, use cases and computational requirements that provide a good selection for
implementation and evaluation. We have also listed the main techniques used within the methods that can prove useful
in implementation and research. Intensity correction is one of the first mandatory steps in any sonar imaging processing
tasks like object detection and segmentation that will be covered in our future research.
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