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МЕТОД АВТОМАТИЗОВАНОГО ФОРМУВАННЯ КЛАСТЕРІВ 
ПРОГРАМНОЇ СИСТЕМИ НА ОСНОВІ СТРУКТУРНО-СЕМАНТИЧНОГО 
АНАЛІЗУ КОМПОНЕНТІВ З ВИКОРИСТАННЯМ НЕЙРОННИХ МЕРЕЖ

У статті розглянуто проблему трансформації монолітних архітектур програмних систем у мікросервіс-
ні, яка є одним із ключових завдань сучасної інженерії програмного забезпечення. Монолітні системи з часом 
набувають надмірної складності та високого рівня внутрішньої зв’язаності, що ускладнює їх масштабування, 
супровід і модифікацію. Мікросервісна архітектура, орієнтована на незалежні сервіси з чіткими інтерфейсами, 
значною мірою вирішує ці проблеми, однак постає нетривіальне завдання коректної декомпозиції, яке не має 
єдиного універсального розв’язку.

У роботі запропоновано метод декомпозиції, що поєднує структурний та семантичний аналіз вихідного коду 
з навчанням нейронних мереж для графів, спрямованих на автоматизоване формування кластерної структури 
системи. Особливістю підходу є багаторівнева побудова графа залежностей, яка враховує різні типи зв’язків 
(виклики методів, наслідування, використання ресурсів), а також запровадження вагових коефіцієнтів вузлів, 
розрахованих на основі показників центральності. Перед етапом кластеризації застосовано поетапну струк-
турну оптимізацію графа, що включає виявлення сильно зв’язаних компонент, циклів, мостів і точок артику-
ляції, а також зниження впливу надлишкових і шумових зв’язків. Це дозволяє підвищити точність і надійність 
подальшого групування компонентів.

Додатково реалізовано адаптивний вибір алгоритму кластеризації на основі метрик графа (щільність, кіль-
кість вузлів, центральність, коефіцієнт спільного використання ресурсів), що дозволяє узгоджувати метод 
із поточними характеристиками структури. Навчання графової нейронної мережі здійснюється на векто-
рах ознак, які інтегрують топологічні та семантичні характеристики компонентів, що забезпечує виявлення 
латентних закономірностей у складних залежностях.

Порівняльний аналіз із сучасними методами декомпозиції (CoGCN, DEEPLY, HyDEC, GDC-DVF, Mo2oM) під-
твердив ефективність запропонованого підходу. Результати показали перевищення існуючих рішень за показ-
ником структурної модульності (SM), що відображає вищу когезію та чіткіші межі сформованих сервісів, при 
одночасному збереженні відносно низького рівня міжсервісних залежностей. Це свідчить про наукову новизну 
та практичну значущість розробленого методу, який може бути використаний як у дослідницькому середовищі, 
так і в реальних промислових системах.

Ключові слова: монолітна архітектура, мікросервісна архітектура, декомпозиція, когезія, зв’язаність, гра-
фові моделі, семантичний аналіз, нейронні мережі.
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A METHOD OF AUTOMATED FORMATION OF CLUSTERS OF THE SOFTWARE SYSTEM 
BASED ON STRUCTURAL-SEMANTIC ANALYSIS OF COMPONENTS USING NEURAL NETWORKS

The article examines the problem of transformation of monolithic architectures of software systems into microservice 
ones, which is one of the key tasks of modern software engineering. Monolithic systems eventually acquire excessive 
complexity and a high level of internal connectivity, making them difficult to scale, maintain and modify. Microservice 
architecture, oriented towards independent services with clear interfaces, largely solves these problems, however, the 
non-trivial task of correct decomposition arises, which does not have a single universal solution.

The paper proposes a decomposition method that combines structural and semantic analysis of source code with training 
of neural networks for graphs aimed at automated formation of the cluster structure of the system. A feature of the approach 
is the multi-level construction of the dependency graph, which takes into account different types of relationships (calls 
of methods, imitation, use of resources), as well as the introduction of node weights calculated on the basis of centrality 
indicators. Prior to the clustering step, a stepwise structural graph optimization is applied, involving the detection of strongly 
coupled components, cycles, bridges and articulation points, and the reduction of the influence of redundant and noise links. 
This makes it possible to increase the accuracy and reliability of further grouping of components.

In addition, an adaptive selection of the clustering algorithm based on graph metrics (density, number of nodes, 
centrality, resource sharing coefficient) is implemented, which allows you to match the method with the current 
characteristics of the structure. Graph neural network training is carried out on feature vectors that integrate topological 
and semantic characteristics of components, which ensures the detection of latent regularities in complex dependencies.

Comparative analysis with current decomposition methods (CoGCN, DEEPLY, HyDEC, GDC-DVF, Mo2oM) 
confirmed the effectiveness of the proposed approach. The results showed an excess of existing solutions according to 
the structural modularity indicator (SM), which reflects higher cohesion and clearer boundaries of the formed services, 
while maintaining a relatively low level of interservice dependencies. This shows the scientific novelty and practical 
significance of the developed method, which can be used both in the research environment and in real industrial systems.

Key words: monolithic architecture, microservice architecture, decomposition, cohesion, connectivity, graph models, 
semantic analysis, neural networks.

Постановка проблеми
Проблема переходу від монолітних систем на мікросервіси є однією з ключових у сучасній програмній інже-

нерії. Моноліти, історично розроблені як єдині інтегровані системи, з часом набувають надмірної складності та 
високого рівня внутрішнього зв’язку, що ускладнює масштабування, модифікацію та підтримку. Мікросервісна 
архітектура, яка базується на незалежних компонентах з чіткими межами, вирішує ці проблеми, але вимагає пра-
вильного визначення меж між сервісами.

Задача декомпозиції моноліту на мікросервіси не має єдиного рішення: надто дрібна сегментація створює 
надмірний міжсервісний трафік і збільшує складність координації, тоді як надто грубе розбиття зберігає про-
блеми моноліту. Тому в наукових дослідженнях запропоновано ряд методів, від евристичних підходів на основі 
статичного аналізу до методів глибинного навчання нейронних мереж для графових структур. Серед сучасних 
рішень варто згадати CoGCN, DEEPLY, HyDec, GDC-DVF, і Mo2oM. Вони по-різному інтегрують структурний 
і семантичний аналіз, демонструючи різні компроміси між когезією та каплінгом.

Метою даної роботи є розробка та дослідження вдосконаленого методу декомпозиції, який поєднує статичний 
аналіз вихідного коду, оптимізацію графів залежностей, динамічну вибір алгоритму кластеризації, оптимізацію 
результатів кластеризації з урахуванням когезії, каплінгу та семантичної однорідності, а також навчання нейрон-
ної мережі на основі отриманих оптимізованих даних. Запропонований підхід спрямований на досягнення висо-
кої когезії сервісів з контрольованим рівнем міжсервісної зв’язності та семантичної однорідності, що є необхід-
ною умовою ефективної експлуатації програмних систем.

Аналіз останніх досліджень і публікацій
CO-GCN (Clustering and Outlier-aware Graph Convolutional Network) – метод декомпозиції монолітних засто-

сунків, який представляє систему у вигляді графа, де вузлами є класи, а ребрами – залежності викликів та спільна 
участь у виконанні точок входу. На основі цього графа формується матриця ознак, що поєднує структурні харак-
теристики та семантичні властивості.

Особливістю підходу є урахування вузлів-викидів, які спотворюють структуру системи. Для цього у CO-GCN 
використовується функція втрат із трьох компонентів: втрати від структурних викидів, втрати від атрибутивних 
викидів та втрати від кластеризації. Навчання здійснюється за схемою почергової мінімізації, коли послідовно 
оновлюються параметри мережі, оцінки викидів і центри кластерів [1].

Метод було протестовано на типових Java-системах, зокрема DayTrader, де він продемонстрував вищу якість 
декомпозиції порівняно з базовими методами. Водночас автори відзначають, що масштабованість підходу обме-
жена через високу обчислювальну складність процедури навчання та залежність результатів від повноти й якості 
даних про транзакції [6].
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DEEPLY – метод декомпозиції монолітних застосунків, що ґрунтується на глибинному аналізі вихідного коду 
та транзакцій користувачів із метою автоматизованого формування мікросервісів. Система подається у вигляді 
матриці, яка враховує як статичні залежності між класами, так і динамічні зв’язки, що виявляються під час вико-
нання. На основі цих даних нейронна мережа навчається виявляти приховані закономірності та групувати компо-
ненти у функціонально узгоджені сервіси.

Особливістю підходу є поєднання структурної інформації (виклики, спільні ресурси) та поведінкової інформа-
ції (шаблони виконання транзакцій). Це дозволяє моделі виділяти сервіси, які не лише мають внутрішню когезію, 
а й відповідають реальним сценаріям використання системи [2, 3].

Експерименти показали, що метод здатен перевершувати класичні евристичні підходи та конкурувати з екс-
пертними системами. Водночас обмеженням DEEPLY є висока потреба у даних трасування виконання, а також 
значні обчислювальні витрати при навчанні на великих системах [6].

HyDec– метод декомпозиції монолітних застосунків, що базується на ієрархічному застосуванні алгоритму 
DBSCAN для виявлення меж потенційних мікросервісів. Система представляється у вигляді графа залежностей 
між класами та транзакціями, після чого відбувається багаторівневе групування елементів із врахуванням щіль-
ності їхніх зв’язків. На відміну від класичного DBSCAN, який працює на одному рівні щільності, HyDec викорис-
товує ієрархічний підхід: спочатку формуються великі кластери, а потім вони поступово розділяються на менші 
підкласи доти, доки не досягається оптимальний баланс когезії та зв’язаності.

Ключовою особливістю підходу є здатність уникати проблем надмірного злиття або, навпаки, надмірної фраг-
ментації сервісів. Алгоритм динамічно підлаштовує поріг щільності для різних ділянок графа, що дозволяє більш 
точно виявляти функціонально пов’язані компоненти [4].

Експерименти, проведені на типовому наборі Java-застосунків, показали, що HyDec здатен перевершувати 
як евристичні методи, так і окремі гібридні підходи, забезпечуючи кращий баланс між когезією та мінімізацією 
міжсервісних залежностей. Водночас метод чутливий до вибору параметрів початкового DBSCAN і може потре-
бувати додаткового налаштування для систем із різною структурою [6].

GDC-DVF – метод виділення мікросервісів, що ґрунтується на глибокій кластеризації графів із використанням 
механізму «подвійного злиття уявлень» (dual view fusion). У даному підході програмна система моделюється як 
граф залежностей, який розглядається одночасно з двох точок зору: структурної (статичні зв’язки між класами, 
спільні ресурси, виклики) та атрибутивної (семантичні й поведінкові характеристики).

Ключова ідея методу полягає у поєднанні цих двох уявлень за допомогою механізму злиття, що дозволяє 
уникнути перекосів, властивих підходам, орієнтованим лише на один тип даних. Для цього застосовується гли-
бока нейронна мережа кластеризації, яка навчається формувати узгоджені векторні подання вузлів і групувати їх 
у кластери, що відповідають потенційним мікросервісам [5].

Експерименти продемонстрували, що GDC-DVF забезпечує вищу якість декомпозиції порівняно з традицій-
ними методами та низкою сучасних моделей, зокрема завдяки здатності адаптивно враховувати як структурні, 
так і семантичні ознаки. Водночас метод має підвищені вимоги до обсягів навчальних даних і є обчислювально 
затратним, що може ускладнити його застосування у великих промислових системах [6].

Mo2oM – метод декомпозиції монолітних систем у мікросервіси, який зосереджений на підтримці перекрив-
них сервісів (overlapping microservices), тобто ситуацій, коли окремі компоненти можуть належати до кількох 
функціональних підсистем одночасно. Така особливість відповідає реальним вимогам великих програмних сис-
тем, де однакові класи чи модулі можуть обслуговувати різні бізнес-процеси.

У цьому підході використовується поєднання глибоких семантичних векторних подань (deep semantic 
embeddings), що моделюють зміст і функціональне призначення класів, та графових нейронних мереж, які врахо-
вують структурні залежності між компонентами. Кластеризація виконується у «м’якій» формі, тобто з неповним 
закріпленням вузлів за одним кластером, що дозволяє формувати перекривні множини мікросервісів.

Результати досліджень показали, що Mo2oM забезпечує вищі значення когезії сервісів і водночас дозволяє 
зберегти гнучкість при моделюванні складних архітектурних залежностей. Метод особливо ефективний на сис-
темах із великою кількістю повторно використовуваних класів. Водночас його обчислювальна складність є підви-
щеною, а для якісного результату потрібні багаті семантичні ознаки вихідного коду [6].

Аналіз показує, що поєднання графових моделей та методів машинного навчання має значний потенціал для 
підвищення якості декомпозиції, однак існуючі рішення залишаються обмеженими щодо точності та здатності до 
узагальнення.

Формулювання мети дослідження
Метою дослідження є розробка методу декомпозиції монолітних архітектур, що забезпечує підвищення 

ефективності мікросервісних систем шляхом поєднання структурного й семантичного аналізу та використання 
нейронних мереж для формування висококогерентних і слабо зв’язаних сервісів.
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Викладення основного матеріалу дослідження
Запропонований підхід спрямований на підвищення точності та надійності процесу декомпозиції монолітних 

застосунків шляхом поєднання статичного аналізу коду, формальної оптимізації графа залежностей, динамічного 
вибору алгоритму кластеризації та використання нейронних мереж для моделювання структурних і семантичних 
властивостей компонентів.

У запропонованому методі вихідний код системи перетворюється на орієнтований зважений граф, де вузли 
відображають різні типи компонентів – від центральних сервісів до допоміжних утиліт. Оскільки їхня роль 
у функціонуванні системи є нерівнозначною, просте використання лише зв’язків між ними може призвести до 
хибних результатів кластеризації: наприклад, до об’єднання ключових компонентів у один кластер або, навпаки, 
до відокремлення другорядних модулів у незалежні мікросервіси.

Щоб уникнути таких викривлень, у методі запроваджено ваговий коефіцієнт вузла W(v), який кількісно відо-
бражає архітектурну значущість кожного компонента. Розрахунок цього коефіцієнта ґрунтується на трьох аспектах:

1.	 кількості його вхідних і вихідних зв’язків;
2.	 ролі у передачі даних між іншими модулями;
3.	 частоті використання як залежності в інших компонентах.
Формула розрахунку ваги вузла:

W(v) = α ∙ DCin(v) + β ∙DCout(v) + γ ∙ BC(v),
де: DCin(v) – вхідна центральність вузла v; DCout(v) – вихідна центральність вузла v; BC(v) – посередницька цен-
тральність вузла v; α, β, γ ∈ [0; 1] – вагові коефіцієнти, визначаються емпірично на основі типу системи.

Ребра відображають різні типи залежностей: виклики методів, використання спільних ресурсів, наслідування, 
використання інтерфейсу, використання класу. Проте для коректної декомпозиції недостатньо враховувати лише 
сам факт існування такого зв’язку. У реальних системах різні типи залежностей мають нерівнозначний вплив на 
архітектуру. Тому під час побудови орієнтованого графа залежностей важливо не лише відображати наявність 
ребер, але й кількісно оцінювати їхню значущість. Це досягається шляхом призначення вагових коефіцієнтів, які 
відображають силу взаємозв’язку та його вплив на узгодженість майбутніх кластерів. Таким чином формується 
більш реалістична топологія графа, що дозволяє уникнути спотворень під час подальшої кластеризації.

Формула для розрахунку ваги зв’язку:
W(eij) = λk ∙ wk,

де: λk – коефіцієнт важливості конкретного типу зв’язку; wk – вага відповідного типу зв’язку.
Вага зв’язку wk визначає загальну силу зв’язку між модулями, але не враховує конкретний контекст. Коефіцієнт 

важливості λk дозволяє адаптувати модель під специфіку системи (змінювати значущість різних зв’язків). Це 
додає гнучкість для налаштування алгоритму аналізу та кластеризації, особливо при масштабуванні системи.

Це дає змогу кількісно оцінити інтегрованість компонентів і створити більш реалістичну модель системи.
На відміну від підходів, де граф залежностей використовується без попередньої обробки, у запропонованому 

методі передбачено його поетапну оптимізацію. На першому етапі за допомогою алгоритму обходу в глибину 
визначаються критичні точки графа, зокрема мости та точки артикуляції, що впливають на глобальну зв’язність 
системи. Далі виконується пошук сильно зв’язаних компонент, які характеризуються високою внутрішньою коге-
зією та відображають циклічні залежності у коді. Такі компоненти розглядаються як єдині логічні блоки, оскільки 
їхнє штучне розділення призводить до втрати цілісності та появи структурних антипатернів.

Виявлення мостів, точок артикуляції та сильно зв’язаних компонент дає змогу виділити критичні області 
графа та зменшити надмірні циклічні залежності, завдяки чому граф набуває більш збалансованої структури 
й стає придатним для подальшої кластеризації.

На основі аналізу ключових графових метрик – кількості вузлів, щільності, середньої нормалізованої посеред-
ницької центральності​, середня кількість вихідних залежностей та коефіцієнта спільного використання ресур-
сів – було сформовано адаптивний алгоритм вибору методу кластеризації. Такий підхід дозволяє динамічно узго-
джувати обраний алгоритм зі структурними особливостями графа, що забезпечує вищу ефективність обчислень 
і покращує якість кластерного розбиття.

Після первинного розбиття графа на кластери виконується додатковий етап перевірки та удосконалення отри-
маної структури. На цьому етапі враховуються три ключові фактори:

•	 когезія (щільність внутрішніх зв’язків);
•	 зв’язаність (мінімізація міжкластерних викликів);
•	 семантична однорідність (узгодженість назв класів, пакетів, доменних понять).
Відповідно, оптимізаційна задача полягає у знаходженні такого розбиття C1, C2, …, Ck, яке максимізує уза-

гальнену функцію:
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де: λ1, λ2 – вагові коефіцієнти, які відображають важливість кожного критерію; d – фіксований пороговий рівень.
Розв’язання вищезазначеної задачі дозволить досягти балансованого архітектурного зонування програмної 

системи з чітко вираженими межами відповідальності підсистем.
Запропонована стратегія оптимізації є адаптивною та багатокритеріальною, оскільки враховує як топологічні, 

так і семантичні властивості системи. Вона забезпечує поступове вдосконалення кластерної структури шляхом 
локальних змін, усуває надлишкові або семантично нечіткі зв’язки та створює підґрунтя для переходу до архітек-
тури з високою когезією та контрольованою зв’язаністю.

У межах дослідження було використано графову нейронну мережу для автоматизованого уточнення кластери-
зації, сформованої на основі попередньої оптимізації графа та евристичного структурування. На відміну від під-
ходів із жорстко заданими правилами, запропонована модель здатна відображати як структурні, так і семантичні 
закономірності у системі залежностей.

Для кожного компонента сформовано вектор ознак, що поєднує топологічні характеристики та семантичні 
індикатори. Це дозволило врахувати як локальну, так і глобальну роль компонентів.

Отримані ознаки були інтегровані у нормалізовану матрицю суміжності з додаванням самопетель, що забез-
печило стабільність агрегації та збереження власної інформації вузлів. Навчання нейронної мережі виконувалося 
на основі кластерних міток, отриманих під час оптимізації графа, із використанням функції втрат, яка поєднувала 
три складники: максимізацію внутрішньої когезії, мінімізацію міжкластерних залежностей та підвищення семан-
тичної однорідності.

У результаті сформовано кластерну структуру, яка не лише відтворила початкову функціональну логіку, але 
й покращила її за рахунок узгодження структурних і семантичних властивостей. Додатковий етап оптимізації 
результатів дозволив знизити рівень міжкластерних зв’язків шляхом локального перенесення вузлів, що мали 
надмірні залежності, у суміжні кластери за умови збереження їх когезії.

Завершальний етап дослідження полягав у порівняльному аналізі запропонованого підходу до декомпозиції 
монолітної архітектури з сучасними методами CoGCN, DEEPLY, HyDEC, GDC-DVF та Mo2oM. Числові значення 
для цих методів узято з узагальненої таблиці результатів у роботі [6], що забезпечує коректність зіставлення 
завдяки використанню єдиних метрик і тестових застосунків.

Якість декомпозиції оцінювалась за двома взаємодоповнюючими метриками: структурна модульність (SM), 
яка характеризує рівень когезії всередині сервісів, та частка міжсервісних викликів (ICP), що відображає ступінь 
зовнішньої зв’язаності. Високі значення SM свідчать про ефективне інкапсулювання бізнес-логіки, тоді як низькі 
значення ICP означають мінімізацію міжсервісних залежностей. Для системи, де враховано всі типи зв’язків, 
виконується співвідношення SM+ICP=1 що підкреслює їх взаємодоповнюваність.

З огляду на різнорідність тестових систем і чутливість методів до предметної області, для зіставлення врахо-
вано найкращі зафіксовані показники SM та ICP для кожного з підходів. Це дозволяє оцінити граничний потен-
ціал алгоритмів за сприятливих умов, а не усереднені результати, що можуть згладжувати сильні сторони окре-
мих методів.

Для запропонованого методу показники отримані під час експериментів на реальному промисловому про-
єкті, що перебуває в експлуатації. Це забезпечило перевірку підходу в умовах, коли архітектурні залежності без-
посередньо відображають бізнес-процеси та робочі навантаження, і підтвердило його практичну ефективність. 
Результати представлені в таблиці 1.

Таблиця 1
Порівняння сучасних методів декомпозиції монолітних систем за метриками 

структурної модульності (SM) та частки міжсервісних викликів (ICP)
Метод Найкращий SM Найкращий ICP
CoGCN 0.086 0.300
DEEPLY 0.215 0.347
HyDEC 0.509 0.037

GDC-DVF 0.152 0.274
Mo2oM 0.692 0.100

Запропонований метод 0.726 0.274

Результати аналізу свідчать, що за показником структурної модульності (SM) запропонований підхід досягає 
найвищого значення (0.726), перевищуючи навіть сучасний метод Mo2oM (0.692). Це підтверджує більш високу 
когезію сформованих сервісів, їх внутрішню узгодженість та чіткість архітектурних меж.
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За показником частки міжсервісних викликів (ICP) найнижче значення демонструє метод HyDEC (0.037), 
проте воно супроводжується істотним зниженням когезії. Найбільш збалансованим серед існуючих підходів 
є Mo2oM (SM = 0.692, ICP = 0.100). Водночас запропонований метод забезпечує ще вищу когезію при збере-
женні відносно низького рівня міжсервісної зв’язаності (ICP = 0.274). Таким чином, він демонструє оптимальний 
баланс: сформовані сервіси є внутрішньо стійкими й водночас достатньо ізольованими для мінімізації міжсервіс-
них залежностей.

Висновки
Порівняльний аналіз сучасних підходів до декомпозиції засвідчує, що найвищі результати демонструють 

методи, які поєднують графові евристики з навчальними моделями. Запропонований у цьому дослідженні метод, 
що інтегрує оптимізацію графа залежностей, динамічний вибір алгоритму кластеризації та навчання графової 
нейронної мережі, перевищує всі відомі рішення за показником структурної модульності, що підтверджує його 
ефективність у формуванні когерентних і добре структурованих сервісів. Подальші напрями розвитку пов’язані 
з удосконаленням механізмів зниження міжсервісних викликів та впровадженням методів підкріплювального 
навчання для автоматизації вибору кластеризаційної стратегії.
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