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ОСОБЛИВОСТІ ПОБУДОВИ ТА ПРОГРАМНОЇ РЕАЛІЗАЦІЇ 
СТОХАСТИЧНИХ МОДЕЛЕЙ ЦІНОВИХ РУХІВ НА РИНКУ FOREX

У статті проведено поглиблений порівняльний аналіз трьох стохастичних моделей, що застосовуються для 
прогнозування валютних курсів та кількісної оцінки ризиків у фінансовій сфері. Об’єктом дослідження виступає 
валютна пара EUR/USD, яка є ключовим індикатором глобальних макроекономічних тенденцій, характеризуєть-
ся високою ліквідністю та формує орієнтир для широкого кола фінансових інструментів. Розглядаються геоме-
тричний броунівський рух (GBM), модель умовної гетероскедастичності GARCH(1,1) та стрибково-дифузійний 
процес Мертона, що репрезентують різні підходи до опису динаміки фінансових часових рядів і відображають 
як безперервні, так і дискретні характеристики зміни цін.

Методологія дослідження передбачає програмну реалізацію моделей у середовищі Python із використанням 
бібліотек yfinance, numpy, arch та matplotlib. Дані щоденних котирувань EUR/USD за 2015–2024 роки проходять 
стандартизований препроцесинг: побудову логарифмічних прибутків, перевірку стаціонарності (ADF), діагнос-
тику «важких хвостів» і асиметрії, а також відсіювання аномальних значень.

Симуляційний експеримент включає генерування 1000 імовірнісних траєкторій на горизонтах 1, 5 і 20 днів 
з подальшим обчисленням метрик точності (MSE, MAE) і ризику (VaR, CVaR) з емпіричного прогнозного розподі-
лу. Для візуальної інтерпретації невизначеності побудовано віялоподібні графіки (fan-charts), які відображають 
симетрію/асиметрію та ширину довірчих інтервалів, а також дозволяють порівнювати охоплення інтервалами 
фактичних реалізацій. Окремо оцінено чутливість результатів до вибору довжини вікна, специфікації інновацій, 
інтенсивності стрибків і припущень щодо дрейфу/ризик-премії.

Додатково виконано бектестування ризикових оцінок: для VaR застосовано тести Купіца (безумовна час-
тота порушень) і Христофферсена (незалежність порушень), що дозволяє кількісно оцінити надійність про-
гнозів ризику у стабільні та турбулентні періоди. Порівняльні результати свідчать, що GBM забезпечує просту 
й обчислювально ефективну процедуру короткострокового прогнозування, однак не відтворює кластеризацію 
волатильності та недооцінює екстремальні події. Модель GARCH(1,1) адекватно моделює змінність дисперсії, 
підвищує точність оцінок ризику й зменшує частоту порушень VaR, проте залишається відносно нечутливою 
до раптових новинних стрибків. Модель Мертона, поєднуючи броунівську та пуассонівську компоненти, описує 
рідкісні, але суттєві цінові зсуви та краще відтворює хвостові ризики; поєднання неперервної і дискретної дина-
міки робить її корисною в умовах різкої зміни ринкових режимів.

Зроблено висновок, що інтеграція стохастичних методів із сучасними програмними засобами створює надій-
ну основу для розроблення адаптивних систем прогнозування валютних курсів. Наукова новизна полягає у ціліс-
ному зіставленні трьох підходів з позиції їх здатності відображати специфіку валютного ринку та у прак-
тичній валідації на тривалому часовому ряді, який охоплює майже десятиріччя з гетерогенними економічними 
режимами. Практичне значення полягає в можливості застосування результатів для алгоритмічного трей-
дингу, хеджування валютних ризиків, стратегічного фінансового планування й побудови інтегрованих СППР; 
додатково окреслено напрями подальших досліджень, зокрема розширення класу моделей за рахунок гібридизації 
стохастичних підходів і методів глибинного навчання та розроблення процедур автоматичного вибору моделі 
залежно від ринкового режиму.
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FEATURES OF CONSTRUCTION AND SOFTWARE IMPLEMENTATION 
OF STOCHASTIC MODELS OF PRICE MOVEMENTS IN THE FOREX MARKET

The article presents an in-depth comparative analysis of three stochastic models applied for forecasting exchange 
rates and quantitative risk assessment in the financial sector. The object of study is the EUR/USD currency pair, which 
serves as a key indicator of global macroeconomic trends, is characterized by high liquidity, and functions as a benchmark 
for a wide range of financial instruments. The models under consideration include geometric Brownian motion (GBM), 
the generalized autoregressive conditional heteroskedasticity model GARCH(1,1), and Merton’s jump–diffusion process, 
which represent different approaches to describing the dynamics of financial time series and capture both continuous and 
discrete characteristics of price changes.

The research methodology involves the software implementation of models in the Python environment using the 
yfinance, numpy, arch, and matplotlib libraries. Daily EUR/USD quotes for the period 2015–2024 undergo standardized 
preprocessing: construction of logarithmic returns, stationarity testing (ADF), diagnostics of heavy tails and asymmetry, 
and outlier removal.

The simulation experiment includes generating 1000 probabilistic trajectories at horizons of 1, 5, and 20 days, followed 
by computing accuracy metrics (MSE, MAE) and risk measures (VaR, CVaR) from the empirical predictive distribution. 
To visualize uncertainty, fan charts are constructed that display symmetry/asymmetry, the width of confidence intervals, 
and the overall character of risk dispersion, while also allowing for comparison between interval coverage and realized 
observations. Sensitivity analysis examines the influence of window length, innovation specification, jump intensity, and 
assumptions regarding drift and risk premium.

Additional backtesting of risk forecasts is conducted: for VaR, the Kupiec unconditional coverage test and Christoffersen 
independence test are applied, enabling quantitative assessment of forecast reliability under both stable and turbulent 
conditions. Comparative results show that GBM provides a simple and computationally efficient framework for short-
term forecasting but fails to reproduce volatility clustering and underestimates extreme events. The GARCH(1,1) model 
adequately models time-varying variance, improves risk evaluation accuracy, and reduces the frequency of VaR breaches, 
yet remains relatively insensitive to sudden news-driven jumps. Merton’s model, by combining Brownian and Poisson 
components, captures rare but significant price shifts and better reflects tail risks; the integration of continuous and 
discrete dynamics makes it particularly useful under abrupt regime shifts.

It is concluded that integrating stochastic approaches with modern software tools establishes a reliable foundation for 
the development of adaptive currency-forecasting systems. The scientific novelty lies in a comprehensive comparison of 
three approaches with respect to their ability to reflect the specifics of the FX market, as well as in the practical validation 
of models on an extended time series covering nearly a decade with heterogeneous economic regimes. The practical 
significance is defined by the potential use of the results for algorithmic trading, currency risk hedging, strategic financial 
planning, and the design of integrated decision-support systems. In addition, directions for further research are outlined, 
including the expansion of the model class through hybridization of stochastic approaches with deep learning methods 
and the development of procedures for automatic model selection depending on prevailing market regimes.

Key words: exchange rate, stochastic modeling, geometric Brownian motion (GBM), GARCH(1,1), Merton model, 
jump diffusion, volatility, simulation, forecasting, fan charts, Python, financial mathematics, probabilistic modeling, fan-
chart, risk metrics.

Постановка проблеми
Ринок Forex характеризується безперервним потоком котирувань і високою ліквідністю, а цінові коливання 

на ньому зумовлюються впливом макроекономічних новин, геополітичних подій та поведінкових факторів, що 
визначає такі його особливості:

•	 Нерегулярна волатильність. Валютні курси демонструють кластери високої та низької дисперсії, що пору-
шує припущення про сталість σ у класичних моделях.

•	 «Важкі хвости» та екстремальні події. Емпіричні розподіли прибутків помітно відхиляються від нормаль-
ного, зростає ймовірність великих стрибків, які недооцінює геометричний броунівський рух [1].

•	 Новинні стрибки. Оприлюднення ключових макроіндикаторів здатне зумовити миттєвий зсув курсу на 
десятки базисних пунктів, що вимагає явної стрибкової компоненти в моделі [2].

Традиційно у фінансах широко використовується геометричний броунівський рух (GBM), який передбачає 
постійну волатильність і нормально розподілені лог-прибутки. Проте емпіричні дослідження демонструють наяв-
ність автокореляції квадратів прибутків, кластеризації волатильності, а також «важких хвостів» та асиметрії роз-
поділу – ефектів, які не враховуються моделлю GBM [3]. Це призводить до недооцінки ризиків і неточних про-
гнозів, особливо в періоди ринкової турбулентності.

У відповідь на це було розроблено більш гнучкі моделі, такі як GARCH [4; 5], які дозволяють моделювати 
умовну волатильність, та стрибково-дифузійні моделі, зокрема процес Мертона [2], які враховують нечасті, але 
значні стрибки цін. Кожна з цих моделей має власні переваги та обмеження, і питання вибору адекватного підходу 
залежить від горизонту прогнозу, умов ринку та цілей дослідження.
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Сучасний рівень розвитку інформаційних технологій відкриває можливість програмної реалізації таких моде-
лей у середовищах наукових обчислень, зокрема в Python, із застосуванням спеціалізованих бібліотек (numpy, 
arch, yfinance, matplotlib) для завантаження даних, оцінювання параметрів, симуляцій та візуалізації результатів.

Таким чином, актуальною задачею є комплексне програмне порівняння GBM, GARCH(1,1) та моделі Мертона 
за точністю прогнозування, оцінкою ризиків і поведінкою на різних часових горизонтах, із подальшою інтерпре-
тацією отриманих результатів для практичного використання в ризик-менеджменті та торгових стратегіях.

Аналіз останніх досліджень і публікацій
Останні два десятиліття проблема точного моделювання та прогнозування валютних курсів привертає дедалі 

більше уваги через зростання обсягів електронної торгівлі на ринку Forex і підвищені вимоги до управління рин-
ковими ризиками. Дослідження можна умовно згрупувати у три напрями.

По‑перше, класичні підходи ґрунтуються на геометричному броунівському русі (GBM) і його варіаціях. Ці 
моделі історично застосовувалися до валютних серій завдяки аналітичній простоті, але численні праці [1; 4] 
засвідчили, що припущення про постійну волатильність і нормальний розподіл прибутків призводять до хроніч-
ного недооцінювання «важких хвостів» і крайніх подій.

Другий напрям – моделі умовної гетероскедастичності (ARCH/GARCH). Роботи [5; 2] започаткували цей під-
хід, а численні його розширення (EGARCH, FGARCH, GARCH‑X) успішно відтворюють кластери волатильності 
у валютних рядах. Наприклад, дослідження [6] показали, що функціональні FGARCH‑моделі з регресорами макрое-
кономічних новин підвищують точність прогнозів VaR для EUR/USD на хвилинних даних. Однак GARCH‑сімейство 
залишається малочутливим до раптових цінових стрибків, викликаних позаплановими новинами.

Третій, активно зростаючий пласт літератури присвячений стрибково‑дифузійним схемам і процесам Леві. 
Піонерська модель Мертона  [2] уперше об’єднала безперервну броунівську динаміку та пуассонівські стрибки. 
Подальші дослідження [7; 8] показали, що включення стрибків суттєво покращує опис хвостових ризиків у муль-
тивалютних портфелях. У роботі [9] доведено, що комбінована jump‑GARCH‑модель дає статистично значуще 
поліпшення прогнозної здатності порівняно з «чистим» GARCH.

Водночас формуються гібридні рішення, які поєднують стохастичні процеси з глибинними мережами. 
Дослідження [10] показало, що ініціалізована GARCH‑оцінками модель CNN‑LSTM знижує середньоквадратичну 
похибку одноденного прогнозу волатильності EUR/USD на 10 %. Попри це, автори зауважують відсутність прозо-
рої інтерпретації ризикових метрик у «чистих» ML‑системах, що зберігає актуальність стохастичної компоненти.

Отже, література демонструє послідовний розвиток від простих гаусових моделей до гібридних архітек-
тур «GARCH  +  стрибки  +  ML». Невирішеними залишаються питання обчислювальної стабільності складних 
Леві‑моделей, їх калібрування на високочастотних вибірках і створення уніфікованої СППР, здатної автоматично 
обирати адекватну модель залежно від ринкового режиму.

Формулювання мети дослідження
Мета дослідження – порівняти можливості та точність різних стохастичних моделей (GBM, GARCH(1,1), 

Мертон) для прогнозування курсу EUR/USD, з акцентом на застосуванні сучасних ІТ-інструментів для обробки 
фінансових даних і моделювання ризиків.

Для реалізації цієї мети поставлено такі завдання:
•	 Реалізувати алгоритми GBM, GARCH(1,1) та Мертона в середовищі Python;
•	 Оцінити параметри моделей на основі історичних лог-прибутків за 2015–2024 рр.;
•	 Провести 1000 симуляцій цінових траєкторій на горизонтах 1, 5 і 20 днів;
•	 Побудувати fan-charts для візуалізації ймовірнісних прогнозів;
•	 Розрахувати метрики точності (MSE, MAE) та ризику (VaR, CVaR) для кожної моделі;
•	 Провести порівняльний аналіз результатів та визначити оптимальні сценарії застосування кожного підходу 

у фінансовій аналітиці.
Викладення основного матеріалу дослідження

Інформаційно-обчислювана реалізація та результати
Динаміка валютних курсів на ринку Forex має низку особливостей, які зумовлюють потребу у використанні 

складніших стохастичних моделей. Зокрема, ціни характеризуються відсутністю тренду в лог-прибутках, змін-
ною волатильністю, економічно обумовленими стрибками, а також нормальним або асиметричним розподілом 
з важкими хвостами. У даному дослідженні було обрано три підходи для моделювання курсу EUR/USD: геоме-
тричний броунівський рух (GBM), GARCH(1,1) та стрибково-дифузійний процес Мертона (як окремий випадок 
процесів Леві).

Моделювання виконано у середовищі Python 3.10. Основні бібліотеки:
•	 yfinance – автоматизоване завантаження ринкових даних з Yahoo Finance;
•	 pandas, numpy – обробка та аналіз часових рядів;
•	 scipy – метод максимальної правдоподібності (MLE), статистичні функції;
•	 arch – оцінка параметрів GARCH(1,1);
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•	 matplotlib – побудова візуалізацій;
•	 scipy.stats – обчислення асиметрії, куртозису та інших характеристик.
Для забезпечення відтворюваності результатів зафіксовано генератор випадкових чисел:

np.random.seed(42)

(Фіксує стохастику симуляцій для повторюваних результатів.)
Щоденні котирування валютної пари EUR/USD за період 01.01.2015–31.12.2024 завантажено з Yahoo Finance 

та перетворено у логарифмічні прибутки:

data = yf.download(“EURUSD=X”, start=“2015-01-01”, end=“2024-12-31”)
data.dropna(inplace=True)
data[‘log_returns’] = np.log(data[‘Close’]/data[‘Close’].shift(1))
data.dropna(inplace=True)

(Завантаження, очищення та побудова лог‑прибутків.)

Таблиця 1 
Статистичні характеристики лог-прибутків EUR/USD

Показник Значення Висновок
Середнє значення -0.000057 Середнє ≈ 0 – прибутковість в середньому близька до нуля, що типово для валютного ринку.
Стандартне відхилення 0.004974 Стандартне відхилення ≈ 0.005 – свідчить про досить помірну щоденну волатильність (≈ 0.5 %)
Мінімум -0.028144 Мінімум ≈ ±2.8 % – показують можливі екстремальні коливання (ризики)
Максимум 0.028145 Максимум ≈ ±2.8 % – показують можливі екстремальні коливання (ризики)
Асиметрія (Skewness) -0.051617 Асиметрія ≈ -0.05 – майже симетричний розподіл, дуже слабка лівостороння асиметрія
Куртозис (Kurtosis) 2.605534 Куртозис ≈ 2.6 – трохи менше 3 (нормального розподілу), що не свідчить про heavy tails, але може 

бути результатом вирівнювання у великому періоді

Динаміка лог-прибутків EUR/USD за останні 10 років демонструє властивості близькі до нормального розпо-
ділу, однак слабка лівостороння асиметрія та трохи знижений куртозис можуть свідчити про наявність періодів 
стабільності з окремими викидами. Це обґрунтовує потребу перевірки на кластеризацію волатильності (GARCH) 
і застосування моделей з урахуванням екстремальних подій (jump-diffusion, Леві).

Для оцінки волатильності побудовано часовий ряд абсолютних логарифмічних прибутків валютної пари EUR/
USD за період дослідження:

abs_log = np.abs(data[‘log_returns’])
plt.figure(figsize=(8,3)); plt.plot(abs_log); plt.grid(True)

(Візуалізація періодів підвищеної/зниженої мінливості).

Рис. 1. Абсолютні лог-прибутки EUR/USD

Отриманий графік абсолютних лог-прибутків EUR/USD за 2015–2024 роки свідчить про наявність кластерів 
волатильності: періоди високої та низької активності змін чергуються і тримаються купно. Цей феномен підтвер-
джує доцільність застосування моделей з умовною гетероскедастичністю, зокрема GARCH(1,1), яка дозволяє 
моделювати змінну волатильність у часі.
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Модель геометричного броунівського руху (GBM)
Стохастичне рівняння:

	 dSt = μSt dt + σSt dWt.	 (1)
Код оцінювання параметрів μ, σ методом MLE:

result = minimize(neg_log_likelihood, initial_params,
args=(data[‘log_returns’],), bounds=bounds)

(Оцінка μ, σ методом максимальної правдоподібності.)
Симуляція ціни виконано за дискретизованою схемою:

price[t] = price[t-1] * np.exp((mu_mle - 0.5*sigma_mle**2)*dt
+ sigma_mle*np.sqrt(dt)*Z)

(Оновлення ціни в GBM для одного кроку.)
Для візуалізації ймовірнісних траєкторій побудовано 1000 симуляцій:

for i in range(0, N, 50):
plt.plot(paths[:, i], alpha=0.1)
plt.plot(paths.mean(axis=1), linewidth=2)
plt.grid(True)

(Побудова віялоподібного графіка із середньою траєкторією.)
Було отримано наступні параметри:
•	 середній приріст (μ): 0.010000;
•	 волатильність (σ): 0.050000;
•	 лог-правдоподібність моделі: −5342.41;
•	 остання ціна (S0) на момент прогнозу: 1.04294.
За результатами 1000 імовірнісних сценаріїв розраховано наступні статистики точності та ризику:

Горизонт MSE MAE VaR (95 %) CVaR (95 %)
1 день 0.000010 0.002562 -0.004772 -0.006035
5 днів 0.000054 0.005915 -0.011651 -0.014475
20 днів 0.000228 0.012008 -0.022874 -0.028294

Рис. 2. Метрики точності та ризику прогнозу курсу EUR/USD за моделлю GBM (MLE) 
на різних горизонтах

На горизонті 1 день модель геометричного броунівського руху (GBM) демонструє дуже низькі значення похи-
бок: середньоквадратична помилка (MSE) становить 0.000010, а середня абсолютна похибка (MAE) – 0.00256. Це 
вказує на високу стабільність короткострокового прогнозу, що властиво GBM, яка моделює ціни без урахування 
змінної волатильності. Значення Value at Risk (VaR) на рівні 95 % становить -0.00477, тобто з 5 % ймовірністю 
курс може впасти більше ніж на 0.48 %. Conditional VaR (CVaR), що оцінює середню втрату в найгірших 5 % 
випадків, дорівнює -0.00604, що свідчить про обмежене урахування ризиків екстремальних коливань.

На горизонті 5 днів модель фіксує зростання похибок: MSE підвищується до 0.000054, а MAE – до 0.00592. 
Значення VaR (95 %) становить -0.01165, тобто у 5 % найгірших сценаріїв втрати можуть перевищити 1.17 %. 
CVaR при цьому дорівнює -0.01448, що свідчить про середню втрату у крайніх випадках понад 1.45 %. Модель 
зберігає симетричність прогнозів, однак починає проявляти ознаки обмеженості в оцінці «хвостів» розподілу.

На горизонті 20 днів GBM демонструє зростання невизначеності: MSE збільшується до 0.000228, MAE – до 
0.01201. Прогнозоване значення VaR (95 %) досягає -0.02287, тобто модель очікує зниження курсу більш ніж на 
2.29 % у 5 % випадків. Значення CVaR становить -0.02829, тобто в найгірших сценаріях середня втрата переви-
щує 2.83 %. Хоча модель і демонструє поступове розширення розподілу, вона не враховує змінної волатильності 
чи стрибків, що обмежує її здатність моделювати екстремальні події на довших горизонтах.

Віялоподібні графіки ілюструють зростання розкиду можливих цін із подовженням горизонту прогнозу. На 
1 день більшість траєкторій залишаються близько до поточного рівня; на 5 днів зберігається симетрія розподілу; 
на 20 днів з’являються крайні траєкторії. Таким чином, GBM підходить для швидкої базової оцінки ризиків та 
побудови стартових торгових стратегій, але для складних ринкових режимів варто використовувати моделі зі 
змінною волатильністю (GARCH) або стрибково-дифузійні підходи.

Модель умовної гетероскедастичності GARCH(1,1)
Модель GARCH (Generalized Autoregressive Conditional Heteroskedasticity) описує серії, де волатильність змі-

нюється з часом, тобто залежить від попередніх значень.
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	 ( ) 2
1 1, ., ~ 0,t t t t t t tr є є N h h є h- -= m + = ω + α + b 	 (2)

Параметри моделі оцінено методом максимальної правдоподібності на відсоткових лог‑прибутках (розподіл 
інновацій – нормальний).

model = arch_model(100*data[‘log_returns’], vol=’GARCH’, p=1, q=1, dist=’normal’)
res = model.fit(disp=’off’)

(Оцінювання GARCH(1,1) пакетом arch.)
Із оцінки беремо необхідні параметри для симуляцій:

mu = res.params[‘mu’]/100; omega = res.params[‘omega’]
alpha = res.params[‘alpha[1]’]; beta = res.params[‘beta[1]’]

(Зсув μ та параметри волатильності ω, α, β.)
Налаштовуємо експеримент (горизонти та кількість траєкторій):

horizons = [1, 5, 20]; n_paths = 1000; np.random.seed(42)

(Єдність налаштувань для порівняння з GBM/Мертоном.)
Симуляція однієї траєкторії (рекурсія дисперсії та крок ціни):

z = np.random.normal(); sigma2 = omega + alpha*(z**2)*sigma2 + beta*sigma2
ret = mu + np.sqrt(sigma2)*z; price *= np.exp(ret)

(Оновлення σ² за GARCH(1,1) і приріст лог‑ціни.)
Fan‑chart (віяло) для кожного горизонту:

for i in range(n_paths): plt.plot(simulated_paths[:, i], alpha=0.05)
plt.plot(simulated_paths.mean(axis=1), linewidth=2); plt.grid(True)

(Багато траєкторій + середня траєкторія.)
Метрики точності та хвостового ризику (по кінцевому кроці):

returns = np.log(simulated_paths[horizon, :]/S0)
var_95 = np.percentile(returns, 5); cvar_95 = returns[returns <= var_95].mean()

(VaR95 і CVaR95; MSE/MAE – як у GBM, по цінах кінцевого дня.)
Було отримано наступні параметри:
•	 середній приріст (μ): -0.00527;
•	 ω: = 0.00133 – базова волатильність у спокійному стані;
•	 α: 0.0264 – реакція волатильності на нові шоки;

Рис. 3. GBM – Віялоподібна симуляція імовірнісного прогнозу курсу EUR/USD на X днів
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•	 β: 0.9675 – інерція волатильності (пам’ять у процесі);
•	 лог-правдоподібність: -1718.87;
•	 остання ціна (S0): 1.04294.
Сума параметрів α + β = 0.994, що свідчить про високу стійкість волатильності до згасання – ефекти потрясінь 

довго зберігаються в системі (типова риса валютних ринків).
За результатами 1000 імовірнісних сценаріїв розраховано наступні статистики точності та ризику:

Горизонт MSE MAE VaR (95 %) CVaR (95 %)
1 день 0.335724 0.410128 -0.773324 -1.076854
5 днів 5.187341 1.253515 -1.659854 -2.136406
20 днів 1670.806 8.820422 -3.256442 -4.202612

Рис. 4. Метрики точності та ризику прогнозу курсу EUR/USD за моделлю GARCH(1,1) 
на різних горизонтах

На горизонті 1 день модель GARCH(1,1) демонструє значно вищі значення похибок порівняно з GBM. 
Середньоквадратична помилка (MSE) становить 0.3357, а середня абсолютна похибка (MAE) – 0.4101, що свід-
чить про врахування змінної волатильності вже на короткому проміжку. Значення VaR (95 %) дорівнює -0.7733, 
тобто з імовірністю 5 % очікується падіння курсу більш ніж на 0.77. Середня втрата у найгірших 5 % сценаріїв, 
тобто CVaR (95 %), досягає -1.0769, що вказує на наявність більш глибоких втрат у крайніх випадках. Це резуль-
тат здатності моделі враховувати «турбулентність» – кластери високої волатильності.

На горизонті 5 днів MSE суттєво зростає до 5.1873, а MAE – до 1.2535, що вказує на накопичення волатиль-
ності з часом. Значення VaR (95 %) дорівнює -1.6599, а CVaR – -2.1364, тобто в найгірших випадках втрати 
можуть перевищувати 2.1. Це підтверджує, що GARCH краще враховує ризики на середньостроковому горизонті, 
ніж GBM, і дозволяє прогнозувати не лише центральні, але й крайні значення розподілу.

На горизонті 20 днів GARCH(1,1) демонструє різке зростання помилок: MSE досягає 1670.806, а MAE – 
8.8204, що вказує на сильну дивергенцію траєкторій, характерну для умов із довготривалими ефектами волатиль-
ності. VaR (95 %) становить -3.2564, тобто очікуване падіння в найгірших 5 % сценаріїв перевищує 3.25. CVaR 
(95 %) дорівнює -4.2026 – у таких випадках середня втрата перевищує 4.20. Це свідчить про здатність моделі 
GARCH(1,1) враховувати «важкі хвости» розподілу та високу чутливість до ризиків у довгостроковій перспективі.

Рис. 5. GARCH(1,1) – Віялоподібна симуляція імовірнісного прогнозу курсу EUR/USD на X днів

На 1 день: траєкторії скупчені навколо поточної ціни, але вже видно вплив волатильності;
На 5 днів: зростає розкид, з’являються траєкторії з вибухами волатильності;
На 20 днів: сильна дивергенція, деякі траєкторії набувають екстремальних значень – характерна властивість 

GARCH.
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Побудована модель GARCH(1,1) успішно відобразила динаміку змінної волатильності валютної пари EUR/
USD. На відміну від GBM, ця модель:

•	 Вловлює кластери волатильності (періоди турбулентності та спокою),
•	 Реалістично оцінює ризики (VaR, CVaR) – особливо на довших горизонтах,
•	 Не припускає симетричного розподілу – хвости розподілу стають важчими з часом.
Модель Мертона (jump-diffusion)
Стрибково-дифузійна модель (процес Мертона) є надбудовою над GBM, де додається пуассонівська компо-

нента для опису раптових стрибків у динаміці цін:

	 dSt = μSt dt + σSt dWt + St - (e j - 1)dNt.	 (3)

Оцінка базових параметрів і задання характеристик стрибків:

mu = log_returns.mean(); sigma = log_returns.std()
lambda_j = 0.05; mu_j = -0.02; sigma_j = 0.03

(Середній дрейф μ, базова волатильність σ, інтенсивність λ, зсув μ_j та волатильність σ_j стрибка.)
Імітація динаміки для кожного горизонту:

z = np.random.normal()
jump_count = np.random.poisson(lambda_j)
jump_size = jump_count * (mu_j + sigma_j * np.random.normal())
ret = mu + sigma * z + jump_size
price *= np.exp(ret)

(На кожному кроці додається випадкова дифузійна складова та стрибок, якщо він відбувається.)
Побудова fan-chart:

for i in range(n_paths):
plt.plot(simulated_paths[:, i], color=’blue’, alpha=0.1)
plt.plot(np.mean(simulated_paths, axis=1), color=’black’, linewidth=2)

(Відображення всіх траєкторій та середнього сценарію.)
Отримані параметри моделі:
•	 Середній приріст (μ): -0.000057 – майже нульовий дрейф, що вказує на відсутність стабільного тренду.
•	 Базова волатильність (σ): 0.004974 – відносно низька щоденна волатильність за базовим дифузійним 

компонентом.
•	 Інтенсивність стрибків (λ): 0.05 – в середньому 1 стрибок кожні 20 торгових днів.
•	 Середній стрибок (μ_j): -0.0200 – негативний зсув стрибків (на ~2 %), що моделює падіння ціни.
•	 Волатильність стрибків (σ_j): 0.0300 – достатньо висока дисперсія розміру стрибка.
•	 Остання ціна (S0): 1.04294 – базова ціна, від якої моделюється прогноз.

Горизонт MSE MAE VaR (95 %) CVaR (95 %)
1 день 0.000489 0.013335 -0.047305 -0.071546
5 днів 0.002238 0.036970 -0.092381 -0.127912
20 днів 0.008903 0.075606 -0.176692 -0.232963

Рис. 6. Метрики точності та ризику прогнозу курсу EUR/USD за методом Мертона на різних горизонтах

На горизонті 1 день модель Мертона демонструє помірну точність прогнозування: середньоквадратична 
помилка (MSE) становить 0.000489, а середня абсолютна похибка (MAE) – 0.0133. Це вищі значення, ніж у GBM 
та навіть GARCH, що пояснюється врахуванням стрибків у динаміці курсу. Значення VaR (95 %) становить 
-0.0473, тобто з імовірністю 5 % очікується падіння курсу більш ніж на 4.73 %. Середня втрата у цих найгірших 
випадках (CVaR) досягає -0.0715, що вказує на чутливість моделі до екстремальних змін ціни навіть на коротких 
горизонтах.

На горизонті 5 днів модель продовжує демонструвати зростання похибок: MSE дорівнює 0.002238, MAE – 
0.0370. Значення VaR (95 %) зростає до -0.0924, що означає, що в 5 % випадків можливе зниження курсу більш 
ніж на 9.24 %. CVaR на цьому горизонті складає -0.1279, підтверджуючи, що модель ефективно враховує ризик 
глибоких падінь і передбачає потенційні екстремальні втрати краще, ніж GBM.

На горизонті 20 днів MSE досягає 0.008903, MAE – 0.0756, що свідчить про накопичення як базової волатиль-
ності, так і ефектів від стрибків. Значення VaR (95 %) становить -0.1767 – ймовірне падіння курсу більш ніж на 
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17.67 % у гірших сценаріях. Середня втрата в межах найгірших 5 % випадків (CVaR) ще глибша – -0.2330, що 
чітко демонструє здатність моделі Мертона моделювати «жирні хвости» розподілу й описувати рідкісні, але сут-
тєві падіння, характерні для валютного ринку під впливом новин або шоків.

Рис. 7. Метод Мертона – Віялоподібна симуляція імовірнісного прогнозу курсу EUR/USD на X днів

На 1 день: більшість траєкторій близько до ціни, поодинокі стрибки вниз/вгору;
На 5 днів: зберігається симетрія, але зростає кількість траєкторій зі стрибками;
На 20 днів: чітко видно крайні траєкторії – результат накопичення стрибків і базової волатильності.
Модель Мертона забезпечує баланс між простотою GBM і гнучкістю GARCH.
Вона ураховує випадкові стрибки, що робить її придатною для валютних пар із нечастими, але різкими 

рухами. Ризикові метрики (VaR, CVaR) свідчать, що модель краще відображає «хвости» розподілу, ніж GBM. 
Прогнозна точність (MAE/MSE) на горизонтах 1–5 днів є доволі стабільною і корисною для короткострокового 
ризик-менеджменту. На великих горизонтах (20 днів) GARCH переважає за точністю оцінки волатильності, але 
Мертон залишається релевантним, особливо в умовах очікуваних ринкових шоків.

Висновки
У результаті проведеного дослідження було здійснено програмну побудову та порівняльний аналіз трьох 

стохастичних моделей валютного курсу EUR/USD: геометричного броунівського руху (GBM), GARCH(1,1) та 
стрибково-дифузійної моделі Мертона. Реалізація здійснювалась у середовищі Python з використанням бібліотек 
yfinance, numpy, arch та matplotlib, що забезпечило автоматизоване завантаження даних, оцінювання параметрів, 
симуляцію імовірнісних траєкторій та розрахунок показників точності і ризику.

Аналіз показав, що модель GBM забезпечує простоту реалізації та прийнятну точність на коротких горизонтах 
прогнозування, але не здатна відобразити змінну волатильність та крайні значення розподілу. Натомість модель 
GARCH(1,1) успішно моделює кластеризацію волатильності, демонструє високу адаптивність до ринкових умов 
та забезпечує більш реалістичну оцінку ризиків, особливо на середньо- і довгострокових горизонтах.

Модель Мертона виступає проміжною ланкою між зазначеними підходами: вона дозволяє враховувати рід-
кісні, але значні стрибки цін, що особливо важливо в умовах високої невизначеності або під час економічних 
шоків. За точністю на коротких горизонтах вона дещо поступається GARCH, однак перевершує GBM у здатності 
відображати «важкі хвости» розподілу.

Отримані результати підтверджують, що доцільно комбінувати різні класи моделей залежно від завдань: 
GBM – для швидкої базової оцінки та хеджування, GARCH(1,1) – для детального аналізу волатильності, Мертон – 
для сценаріїв із високою ймовірністю шокових подій. Інтеграція математичних моделей у Python дозволяє ство-
рювати адаптивні системи прогнозування валютних курсів, придатні для торгових стратегій, ризик-менеджменту 
та фінансового планування.
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