
ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

352

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

УДК 004.421 004.5	 DOI https://doi.org/10.35546/kntu2078-4481.2025.3.2.45

В. К. ОВСЯК
доктор технічних наук,

професор кафедри комп’ютерних технологій
у видавничо-поліграфічних процесах

Національний університет «Львівська політехніка»
ORCID: 0000-0001-9295-284X

В. Р. ТУРЧАК
аспірант кафедри комп’ютерних технологій

у видавничо-поліграфічних процесах
Національний університет «Львівська політехніка»

ORCID: 0009-0009-2907-1869

МОДЕЛЬ АЛГОРИТМУ ВЗАЄМОДІЇ КОРИСТУВАЧА
З БАЗОЮ СТРУКТУРОВАНИХ ДАНИХ

ДЛЯ АДАПТИВНОГО СОРТУВАННЯ У ВЕБІНТЕРФЕЙСІ

Сортування табличних даних у веб-середовищі потребує рішень, що поєднують практичну інтерактивність
з математичною визначеністю. У статті запропоновано методику та формалізовану модель клієнтського інтер-
фейсу, який імпортує Excel/CSV, виконує очищення й нормалізацію, підтримує фільтри й багатокритеріальне
впорядкування без обов’язкової серверної логіки. Реалізовано два робочі режими: автономний (усі операції вико-
нуються у браузері, локальне зберігання) та інтеграційний (опційний REST-експорт у MySQL/MongoDB/SQLite).
Інтерфейс орієнтовано на покрокову взаємодію: вікна завантаження, параметрів очищення, вибору критеріїв/прі-
оритетів, налаштувань фільтрів і часткового збігу, запуску сортування та перегляду результатів; окремо перед-
бачено логування дій і підказки щодо конфліктних умов. Технічно використано HTML, CSS, JavaScript, IndexedDB/
sql.js та бібліотеку XLSX, що забезпечує доступність і простоту розгортання у локальних середовищах.

Ідейне ядро складає трикомпонентна архітектура даних: T1 (вхідна матриця m × n), T2 (набір четвірок (ci, wi, di,
fi) для формалізації критеріїв і ваг) та T3 (результат після фільтрації/проєкції/сортування). Кожний етап має чіт-
кі оператори: 1 1 1T f T ′→ → (очищення/нормалізація/валідація), 1 2 2T f T′→ → (побудова запиту), 1 2 3 3,T T f T′ → →
(застосування інструкції). Зіставлення текстових полів підтримує нечіткість (зокрема, Левенштейн), що підвищує
стійкість до варіантів написання. Для багатокритеріального порівняння використано (()) , ,k k k k

k

Score r w r c f= ⋅j∑
або лексикографічний ключ, де jk – нормалізована функція порівняння з урахуванням фільтра.

Сортування реалізовано модифікованим Selection Sort із динамічно-наслідковим обмеженням переміщення
R = m/(i + 1), що на кроці i лімітує інтенсивність перестановок (≤ {R}) і запобігає «стрибкам» порядку; неста-
більність базового алгоритму компенсується tie-break за початковим індексом. Логіку взаємодії формалізова-
но як скінченний автомат: стани відповідають вікнам, переходи – подіям користувача; реалізовано валідацію
введення та попередження конфліктів, а зміни параметрів реактивно оновлюють T3. Така побудова забезпечує
прозорість, відтворюваність і можливість генерації контрольних сценаріїв.

Експериментальні випробування на переліках параметричних об’єктів (охоронні сповіщувачі) засвідчили
коректність перетворень, стабілізацію порядку у складних запитах, зручність покрокової роботи і ресурсну
помірність клієнтського виконання. У підсумку модель і програмна реалізація поєднують інтерактивність інтер-
фейсу з формальною строгістю даних, забезпечують автономну роботу та опційну інтеграцію через REST-API,
а також демонструють практичну придатність для аналітики, навчання й адміністративних сценаріїв у CRM/
ERP-контекстах. Наукова новизна полягає в тому, що запропоновано повністю клієнтський цикл обробки (імпорт
→ очищення/нормалізація → фільтрація/проєкція → сортування → відображення) без обов’язкового сервера;
формалізовано трикомпонентну схему T1–T2–T3 (T1 – вхідні дані, T2 – «інструкція» у вигляді четвірок (ci, wi, di, fi),
T3 – результат), що робить налаштування критеріїв і ваг прозорим та відтворюваним. Порівняно з аналогами,
розроблений інтерфейс вирізняється інтерактивністю, підтримкою текстових запитів і чіткою формалізацією
логіки взаємодії, що підвищує його конкурентоспроможність. Додатково система забезпечує автономність робо-
ти (client-side), прозору верифікацію кроків і відтворюваність завдяки моделюванню інтерфейсу як скінченного
автомата та композиції операторів 1 1 1 2 2 3 3.T f T f T f T′→ → → → → → Модифікований Selection Sort з обмежен-
ням R = m/(i + 1) стабілізує порядок за багатокритеріальних запитів, а підтримка REST-експорту і коректного
перетворення типів спрощує інтеграцію з БД (MySQL/MongoDB/SQLite) та масштабування рішення.

Ключові слова: структуровані дані, впорядкована матриця, вебінтерфейс, адаптивне сортування, алгоритм
Selection Sort, нечітке порівняння, відстань Левенштейна, база даних, SheetJS, REST API, JavaScript, скінченний
автомат.

©	 Овсяк В. К., Турчак В. Р., 2025
	 Стаття поширюється на умовах ліцензії CC BY 4.0

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

353

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

V. K. OVSIAK
Doctor of Technical Sciences,

Professor at the Department of Computer Technologies in Publishing
and Printing Processes

National University “Lviv Polytechnic”
ORCID: 0000-0001-9295-284X

V. R. TURCHAK
Postgraduate Student at the Department of Computer Technologies

in Publishing and Printing Processes
National University “Lviv Polytechnic”

ORCID: 0009-0009-2907-1869

MODEL OF THE ALGORITHM FOR USER INTERACTION WITH A STRUCTURED DATA BASE
FOR ADAPTIVE SORTING IN THE WEB INTERFACE

Sorting tabular data in a web environment requires solutions that combine practical interactivity with mathematical
rigor. This article proposes a methodology and a formalized model of a client-side interface that imports Excel/CSV files,
performs data cleaning and normalization, and supports filtering and multi-criteria ordering without mandatory server
logic. Two operating modes are implemented: an autonomous mode (all operations are performed in the browser with
local storage) and an integration mode (optional REST export to MySQL/MongoDB/SQLite). The interface is designed
for step-by-step interaction: windows for loading, data-cleaning parameter settings, criterion/priority selection, filter
and partial-match settings, sorting initiation, and result viewing; separate action logging and hints for conflict conditions
are provided. Technically, the solution uses HTML, CSS, JavaScript, IndexedDB/sql.js, and the XLSX library, ensuring
accessibility and ease of deployment in local environments.

The conceptual core is a three-component data architecture: T1 (input matrix m × n), T2 (a set of quadruples (ci, wi, di, fi)
formalizing criteria and weights), and T3 (the result after filtering/projection/sorting). Each stage has clear operators:

1 1 1T f T ′→ → (cleaning/normalization/validation), 1 2 2T f T′→ → (query construction), and 1 2 3 3,T T f T′ → → (instruction
application). Matching of text fields supports fuzziness (in particular, the Levenshtein distance), which increases robustness
to spelling variants. For multi-criteria comparison, either (()) , ,k k k k

k

Score r w r c f= ⋅j∑ or a lexicographic key is used,
where jk is a normalized comparison function that accounts for the filter.

Sorting is implemented as a modified Selection Sort with a dynamic consequential displacement constraint
R = m/(i + 1), which at step i limits the intensity of permutations (≤ R) and prevents jumps in order; the instability of the
base algorithm is compensated by a tie-break on the initial index. The interaction logic is formalized as a finite automaton:
states correspond to windows, transitions to user events; input validation and conflict warnings are implemented, and
parameter changes reactively update T3. This design ensures transparency, reproducibility, and the ability to generate
control scenarios.

Experimental tests on lists of parametric objects (security detectors) confirmed the correctness of transformations,
stabilization of order in complex queries, convenience of step-by-step work, and moderate resource use in client-side
execution. As a result, the model and software implementation combine interface interactivity with formal data rigor,
provide autonomous operation with optional integration via REST API, and demonstrate practical suitability for
analytics, education, and administrative scenarios in CRM/ERP contexts. The scientific novelty lies in proposing a fully
client-side processing cycle (import → cleaning/normalization → filtering/projection → sorting → rendering) without
a mandatory server; the three-component T1–T2–T3 scheme is formalized (T1 – input data; T2 – the “instruction” in
the form of quadruples (ci, wi, di, fi); T3 – the result), which makes the tuning of criteria and weights transparent and
reproducible. Compared to analogs, the developed interface stands out for its interactivity, support for text queries, and
clear formalization of interaction logic, which enhances its competitiveness. Additionally, the system ensures client-
side autonomy, transparent step verification, and reproducibility thanks to modeling the interface as a finite automaton
and composing the operators 1 1 1 2 2 3 3.T f T f T f T′→ → → → → → The modified Selection Sort with the constraint
R = m/(i + 1) stabilizes order under multi-criteria queries, while support for REST export and correct type conversion
simplifies integration with databases (MySQL/MongoDB/SQLite) and scaling.

Key words: structured data, ordered matrix, web interface, adaptive sorting, Selection Sort, fuzzy matching, Levenshtein
distance, database, SheetJS, REST API, JavaScript, finite automaton.

Постановка проблеми
Упорядкування структурованих табличних даних у веб-інтерфейсі набуває особливої ваги в аналітиці, логіс-

тиці, освіті та адміністративних системах, де цінуються автономність, прозорість і відтворюваність дій корис-
тувача. Більшість поширених рішень орієнтовано на серверну логіку або десктопні інструменти, що ускладнює
роботу в закритих мережах і навчальних середовищах та не завжди забезпечує керовану, пояснювану послідов-
ність обробки.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

354

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Проблема полягає у відсутності уніфікованого клієнтського підходу до інтерактивної обробки табличних даних
із прозорою формалізацією кроків (від імпорту до відображення), стабільним багатокритеріальним сортуванням
і формально визначеною логікою інтерфейсу. На практиці це проявляється в труднощах відтворення результатів,
непередбачуваних «стрибках» порядку під час складних запитів та обмеженій підтримці текстових критеріїв.

Об’єкт дослідження: взаємодія користувача зі структурованими табличними даними у веб-інтерфейсі.
Предмет дослідження: алгоритмічна модель клієнтської обробки та аналізу табличних даних без обов’язкової

серверної логіки.
Аналіз останніх досліджень і публікацій

Упродовж останніх років було опубліковано низку праць, присвячених обробці структурованих даних, сорту-
ванню за множиною критеріїв, а також реалізації інтерактивної взаємодії з табличними структурами у вебсередо-
вищі. Проте ці підходи зазвичай не поєднують повноцінну математичну формалізацію із практичною реалізацією
без серверної логіки. Важливо також враховувати етапи очищення та підготовки даних, які є ключовими для
подальшої обробки [1].

Ще у класичній роботі [2] було запропоновано методи інтеграції табличних даних із мінімальними витратами
зусиль, однак питання побудови адаптивного алгоритму сортування й інтеграції з базами даних там не розгляда-
лося. Низка клієнтських бібліотек (SheetJS, PapaParse, Handsontable) пропонують компоненти для відображення
та базового редагування у браузері, але вони не мають формальної моделі перетворення запиту користувача
у результатну множину (T1, T2, T3), тому їх слід розглядати лише як допоміжні інструменти [3–5].

Моделі інтерактивної візуалізації напівструктурованих даних, як-от [6], орієнтовані переважно на графічне
представлення та профілювання даних без повноцінної логіки багатокритеріального сортування або нечіткого
порівняння текстових полів [7], [8]. Для побудови формальної логіки інтерфейсу як автомата доцільно спиратися
на Statecharts [9]. У [10] представлено веб-додаток PROMETHEE-Cloud для підтримки багатокритеріального ана-
лізу на основі PROMETHEE, однак без побудови структури вебінтерфейсу та формалізації перетворення вихід-
них таблиць у вигляді впорядкованих кортежів і схеми T1 → T2 → T3.

У контексті багатокритеріального аналізу, робота [11] демонструє підхід до групового ранжування, але не
містить реалізації у вебінтерфейсі. Аналогічно, стаття [12] зосереджується на теоретичних засадах багатокритері-
альної вагової агрегації без розгляду технічних аспектів інтеграції в динамічні клієнтські таблиці. Огляд сучасних
підходів до багатокритеріальної (MCDM) агрегації (WSM/SAW, TOPSIS, PROMETHEE та ін.) наведено в [13].

Також заслуговують на увагу підходи з формалізацією фільтрації та ранжування текстових записів, що вико-
ристовують моделі на основі нечіткого порівняння [7], [8]. У роботі [14] реалізовано групове оцінювання ризиків
у середовищі електронної комерції, однак модель не охоплює перетворення таблиць за запитом користувача або
збереження результатів у базі даних.

Окремо слід виділити дослідження, присвячені архітектурі збереження даних. У [15] і [16] проаналізовано
можливості використання MongoDB та MySQL у різних сценаріях, що демонструє потенціал для побудови вебін-
терфейсу з підтримкою REST API та експорту результатів у базу даних.

Таким чином, існує розрив між теоретичними підходами до багатокритеріального сортування та практичними
реалізаціями інтерфейсної взаємодії. Наскільки нам відомо, у відкритій літературі бракує робіт, що одночасно
забезпечують:

–	 клієнтську реалізацію без серверної логіки;
–	 чітку математичну структуру таблиць як впорядкованих матриць або n-кортежів;
–	 перетворення T1 → T2 → T3 відповідно до запиту користувача;
–	 підтримку нечіткого порівняння текстових полів;
–	 збереження результатів у базу даних через REST API.
Це вказує на потребу у побудові цілісної моделі, яка поєднує всі ці компоненти – від валідації та очищення

даних [1] до експорту результатів – у межах єдиного вебінтерфейсу з математичною формалізацією.
Формулювання мети дослідження

Мета дослідження: розробити формалізовану клієнтську модель і модуль веб-інтерфейсу, що забезпечують повний
цикл обробки на боці браузера – імпорт, очищення/нормалізацію, фільтрацію/проєкцію, адаптивне сортування, візуа-
лізацію та (за потреби) інтеграційний експорт – із підтримкою текстових критеріїв і відтворюваних кроків.

Для досягнення поставленої мети потрібно розв’язати такі завдання:
1.	 Проаналізувати сучасні методи сортування табличних даних у веб-інтерфейсах; оцінити можливості та

обмеження бібліотек SheetJS/XLSX, PapaParse, Handsontable щодо покрокового відображення, гнучкої фільтрації
та клієнтської обробки без сервера.

2.	 Сформалізувати й реалізувати клієнтську модель: трикомпонентну структуру T1–T2–T3 з операторами
1 1 1 2 2 3 3T f T f T f T′→ → → → → → і запитом у вигляді четвірок (ci, wi, di, fi); адаптивне сортування (модифікований

Selection Sort з обмеженням R = m/(i + 1) та tie-break), підтримку нечіткого зіставлення (відстань Левенштейна);
інтерфейс як скінченний автомат (вікна/події/стани) з валідацією та реактивним оновленням T3.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

355

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

3.	 Провести експериментальну верифікацію на переліках охоронних сповіщувачів: оцінити швидкодію, ста-
білізацію порядку (зменшення «стрибків» завдяки R), зручність і гнучкість порівняно з аналогами; підсумувати
переваги формалізованої структури та покрокового режиму.

Викладення основного матеріалу дослідження
У процесі дослідження було застосовано сукупність методів, що охоплюють математичне моделювання, теорію

алгоритмів, структурне подання даних та інженерію інтерфейсів. Такий підхід дозволив не лише формально описати
структуру табличних даних, а й забезпечити практичну реалізацію алгоритмів обробки у вебінтерфейсі без викорис-
тання серверної логіки. Послідовність викладу побудовано «знизу догори»: спочатку фіксуємо, що саме є об’єктом
обробки (структура рядка і таблиці), далі – як ці об’єкти трансформуються операторами конвеєра, і зрештою – як це
втілюється в інженерній реалізації. Нижче описано послідовність методів із формалізацією та поясненнями:

1.	 Метод впорядкованих n – кортежів. У цьому пункті використовуємо кортежний опис для формального
подання структури кожного елемента таблиці як об’єкта з фіксованими властивостями. Зокрема, рядок таблиці
описується як ri = (ai,1, ai,2, …, ai,n), i = 1…m, j = 1…n, де ai,j ∈ Sj – значення атрибуту з відповідного домену Sj. Такий
підхід дозволяє визначити таблицю як скінченну множину впорядкованих кортежів:

	 T1 = {r1, r2, …, rm}, ri ∈ S1 × S2 × … × Sn.	 (1)

Таким чином, ми одержуємо строгу типізацію кожного поля й основу для коректних перетворень над мно-
жинами рядків. У наступному пункті цю саму структуру подамо в матричній формі, що забезпечить наочність
позицій елементів і підготує ґрунт для векторизованих операцій та подальшого ланцюга перетворень.

2.	 Матричне представлення таблиць. У цьому пункті формалізуємо структуру всієї таблиці як матрицю

M = {ai,j},  i = 1…m,  j = 1…n,  ai,j ∈ Sj,

де M[i][ j] – значення j-го атрибута в i-му рядку. Відображення між n – кортежем та матрицею є двонаправленим
і взаємно однозначним у межах заданої структури таблиці:

	

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

.

n

n

m m m n

a a a

a a a
M

a a a

 
 
 =  
  … 




   
	 (2)

Тобто кожен кортеж ri повністю відповідає i-му рядку матриці:

	 1 ,1 ,{ (, ,)} .
1i i i n

m
T r a a

i
= = …

=
	 (3)

Далі маючи структурні представлення (кортежне та матричне), у наступному пункті опишемо процесні пере-
творення – поетапні оператори, що ведуть від T1 до T3.

3.	 Функціональне перетворення таблиць. У цьому пункті показано, що перетворення у системі багатокрите-
ріального сортування реалізується не як єдина операція, а як поетапна послідовність дій над множинами рядків.
Кожний етап визначається відповідним оператором fk, що забезпечує перехід від однієї таблиці до наступної.
У найзагальнішій формі цей процес можна подати як ланцюг таких перетворень:

	
31 2

1 1 2 3,
ff f

T T T T′→ → → 	 (4)
де: T1 – початкова таблиця, що виступає вхідними даними. Наприклад, це може бути перелік датчиків безпеки з базо-
вими характеристиками (назва, ціна, дальність виявлення тощо). На цьому етапі дані ще не оброблені і можуть
містити дублікати, помилки чи зайву інформацію; f1 – оператор очищення/нормалізації/валідації. Він призначений
для усунення дублікатів записів, виправлення або видалення помилкових рядків, а також для приведення даних до
узгодженої структури. У результаті його застосування формується проміжна таблиця 1,T ′ яка вже має більш упо-
рядкований вигляд, проте ще не відповідає запиту користувача; f2 – оператор формування запиту. На цьому етапі
не відбираються дані, а специфікуються критерії, задані користувачем: визначаються атрибути для фільтрації/сор-

тування, напрями (↑/↓), ваги та предикати. Результатом є таблиця-інструкція T2 = {(ci, wi, di, fi)} ,
1

k

i =
 що описує

очікувану обробку даних без зміни вмісту 1;T ′ безпосередні фільтрація, проєкція та сортування виконуються на
етапі f3; f3 – оператор застосування запиту (фільтрація, проєкція, сортування). Він послідовно виконує: фільтрацію
рядків 1T ′ за предикатами з T2 (наприклад, «радіус ≥ порогу», «ціна ∈ [a; b]»), проєкцію на релевантні стовпці та
впорядкування за обраними критеріями й напрямами (наприклад, за спаданням точності чи зростанням ціни; за
рівності застосовується лексикографічний/стабільний tie-break). У результаті формується фінальна таблиця T3, що
є відображенням застосованого запиту та слугує підсумковим результатом усього процесу.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

356

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Таким чином, кожен крок у наведеній послідовності є логічно завершеною операцією, а разом вони утворю-
ють цілісний процес перетворення вхідних даних у структурований і впорядкований результат.

В цьому пункті ми зафіксували конвеєр перетворень. Водночас коректність кроку f3 для текстових полів істотно
залежить від стійкого механізму порівняння значень: у реальних даних часто зустрічаються варіанти на кшталт
«IR»/«ІЧ»/«інфрачервоний». Тому в наступному пункті ми формалізуємо нечітке порівняння на основі відстані
Левенштейна та порогів θ, τ, що підвищує надійність фільтрації й сортування.

4.	 Метод нечіткого порівняння текстових полів. Як зазначалося вище, він застосовується у випадках, коли
значення атрибутів у різних рядках таблиці можуть відрізнятися незначними синтаксичними похибками (напри-
клад, різницею у літері, пропущеним символом або варіацією у написанні). Для формалізації такої подібності
використовується метрика Левенштейна dL(s1, s2), яка визначає мінімальну кількість елементарних операцій
(вставка, видалення, заміна символа), необхідних для перетворення рядка s1 у рядок s2:

	 dL(s1, s2) ≤ θ ⇒ s1 ≈ s2.	 (5)

де dL – відстань Левенштейна між рядками s1 і s2, а θ – допустиме відхилення, яке визначає максимальну кількість
допустимих змін символів; у практичних експериментах воно зазвичай становить 1–2.

Таким чином, якщо значення двох текстових полів відрізняються лише на одну чи дві елементарні опера-
ції, вони вважаються еквівалентними з точки зору подальшого сортування та групування. Це дозволяє коректно
обробляти дублікати та однорідні записи навіть у випадку наявності орфографічних помилок чи незначних роз-
біжностей у написанні. У результаті алгоритм забезпечує стійкість до «шуму» у даних та підвищує якість форму-
вання підсумкової таблиці [7], [8]. З огляду на викладене, у наступному пункті продемонстровано їх реалізацію
у клієнтському вебінтерфейсі.

5.	 Інженерна реалізація. Вона передбачає виконання всіх основних операцій – зчитування вхідних таблиць,
обробки даних, сортування та відображення результатів – виключно на стороні клієнта. Для цього використо-
вується JavaScript у поєднанні з бібліотеками SheetJS/PapaParse/Handsontable [3–5]: SheetJS забезпечує парсинг
табличних файлів (XLSX/CSV), PapaParse – стрімінгове опрацювання CSV, Handsontable – відображення та
інтерактивне редагування даних у гріді. HTML5 разом із модальними UI-компонентами формує інтерактивну
взаємодію в браузері. Для збереження та подальшого використання результатів реалізовано опційний механізм
передання даних у зовнішні бази (MongoDB, MySQL, SQLite) через REST API, який виконує лише функцію екс-
порту і не залучається до сортування/обробки [15], [16]. За відсутності серверної інфраструктури підтримується
локальний експорт у файли (CSV/JSON) та/або збереження в IndexedDB. У наступному пункті, щоб керувати
обробкою з інтерфейсу й легко повторювати її між сесіями, вводимо таблицю запиту T2 – короткий набір правил
(ci, wi, di, fi), що визначає, як на кроці f3 виконуються фільтрація, проєкція та сортування.

6.	 Метод інтеграції таблиць із запитом користувача. У цьому пункті формалізуємо таблицю запиту T2,
яка виступає посередником між початковою множиною даних та алгоритмом багатокритеріального сортування
У таблицю T2 заносяться критерії фільтрації, правила сортування та вагові коефіцієнти, що визначають пріори-
тетність кожного критерію. Користувач може задати ці параметри як вручну, так і за допомогою спеціалізованих
форм введення. Формальна модель таблиці T2 описується у вигляді:

	 () () 2 , , , , ,
1i i i i i i

k
T g g c w d f

i
= =

=
	 (6)

де ci – індекс(або унікальна назва) атрибута в T1, а wi ∈ [0; 1] – ваговий коефіцієнт, що відображає його відносну
важливість у процесі прийняття рішення, di – напрямок сортування (↑/↓), fi – фільтр або предикат для відбору зна-
чень атрибуту ci. Таким чином, таблиця T2 узгоджує користувацький запит із системною моделлю, та однозначно
задає, що саме і як застосовується на етапі f3 (фільтрація → проєкція → сортування).

Отже, T2 – це список правил, за якими виконуємо фільтрацію, проєкцію та сортування. Завдяки T2 один і той
самий запит легко повторити між сесіями, а весь процес залишається прозорим і перевірюваним.

У наступному розділі формально задамо структуру T1, T2 і T3 у вигляді кортежів та матриць, покажемо їхні
взаємозв’язки та наведемо приклади застосування.

Формалізацію структури даних у моделі
У запропонованій моделі обробки структурованих табличних даних розглядається система таблиць: вхідна

таблиця даних T1, таблиця користувацького запиту T2 та результатна таблиця T3. Кожна з них має чітко формалі-
зовану структуру у вигляді множин впорядкованих кортежів або матриць. Далі послідовно розглянемо складові
T1 → T2 → T3. Почнімо з джерела даних – вхідної таблиці T1.

1.	 Вхідна таблиця T1
Таблиця T1 містить початкову множину записів, що імпортується з Excel/CSV-файлу. Формально:

	 { } 1 ,1 ,2 ,1
, (, , ,),

m

i i i i i ni
T r r a a a

=
= = … 	 (7)

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

357

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

де: ri – i-й рядок таблиці; ai,j ∈ Sj – значення j-го атрибута з відповідного домену Sj (наприклад, назва, ціна,
дальність, кут огляду, тип); Sj – множина допустимих значень для атрибута j; m – кількість рядків (об’єктів); n –
кількість полів (атрибутів).

У матричному вигляді:

	

1,1 1,2 1,

2,1 2,2 2,

1

,1 ,2 ,

.

n

n

m m m n

a a a

a a a
M

a a a

 
 
 =  
  … 




   
	 (8)

Для наочності доповнимо формальне подання коротким фрагментом T1, приклад наведено в таблиці 1:

Таблиця 1
Приклад вхідної таблиці T1

Назва Ціна Дальність Кут огляду Тип
Датчик-001 500 12 90 ІЧ
Датчик-002 700 8 100 Радіо

… … … … …
Датчик-00n 450 10 95 ІЧ/радіо

Отже, ми зафіксували структуру та типи полів у T1. (наприклад, числові для ціни та дальності, категоріальні
для типу) У наступному пункті формалізуємо наміри користувача у вигляді інструкції T2, що задає фільтрацію,
проєкцію та сортування.

2.	 Таблиця користувацького запиту T2
Модель запиту користувача відображає його очікування: які критерії враховувати, у якому порядку сортувати,

які фільтри застосовувати. Таким чином, T2 є компактною специфікацією критеріїв (ci, wi, di, fi), яка робить засто-
сування кроку f3 відтворюваним і прозорим.

	 { } 2 1
, (, , ,),

k

i i i i i ii
T g g c w d f

=
= = 	 (9)

де: ci ∈ {1, …, n} – індекс атрибута в T1; wi ∈ [0; 1] – вага критерію; di ∈ {↑,↓} – напрямок сортування; fi – логіка
фільтрації (наприклад, «менше ніж 10», «тип = ‘ІЧ’»).

У матричному вигляді:

	

1 1 1 1

2 2 2 2
2 .

k k k k

с w d f

с w d f
M

с w d f

 
 
 =
 
 
 

   
	 (10)

Приклад навелено в таблиці 2:

Таблиця 2
Приклад користувацького запиту T2

Критерій Вага Напрямок Фільтр
Ціна 0,5 ↓ ≤ 1000
Тип 0,3 – = ІЧ

Дальність 0,2 ↑ ≥ 10

Маючи сформовану інструкцію T2, переходимо до її застосування до очищеної таблиці T′1 та отримання резуль-
татної таблиці T3.

3.	 Результуюча таблиця T3

На цьому етапі застосовуємо T2 як керівну інструкцію до 1T ′ (тут і далі 1T ′ – очищена/приведена таблиця після
оператора f1), послідовно виконуємо фільтрацію → проєкцію → сортування й отримуємо T3, що зберігає струк-
туру T1, але містить лише відібрану підмножину записів, упорядковану за критеріями T2.

	
23 2 2 1((.)())T T TT sort filter T ′= π 	 (11)

Таким чином, процес має конвеєрний характер; уточнимо значення кожного оператора.
де: 3 1,T T ′⊆ 2 1()Tfilter T ′ кон’юнктивне застосування предикатів fi, πT2 – проєкція на релевантні атрибути, sortT2 –
процедура впорядкування відібраних рядків за інтегральною оцінкою (Score).

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

358

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Щоб порівнювати рядки за кількома критеріями, вводимо інтегральну оцінку з урахуванням ваг і напрямків.

	
1 1

() [(] , 1,)
k k

j j j j
j j

Score r w norm r c w
= =

′= ′ =∑ ∑ 	 (12)

де: jw′ – ваговий коефіцієнт критерію, а normj ∈ [0, 1] – нормалізоване значення атрибута cj.
Отримані значення інтегральної оцінки визначають пріоритет кожного рядка у результатній таблиці. На алго-

ритмічному рівні впорядкування реалізовано через модифікований Selection Sort, адаптований до динамічно-
наслідкового обмеження переміщення. Введена метрика:

	 , 0,1 ., 1
1

m
R i m= = … -

+i
	 (13)

обмежує кількість змін позицій на i-й ітерації, що запобігає різким стрибкам при великій кількості критеріїв та
забезпечує стабільність сортування. Таким чином, математична модель (Score) визначає цільовий порядок еле-
ментів, а алгоритмічна реалізація (Selection Sort з обмеженням R) забезпечує його практичне досягнення.

Припустимо, що до початкової таблиці T1 (табл. 1) застосовано критерії із T2 (табл. 2):
–	 ціна ≤ 1000,
–	 тип = «ІЧ»,
–	 дальність ≥ 10.
Тоді після фільтрації та сортування формується таблиця T3

Приклад наведено в таблиці 3:

Таблиця 3
Приклад результатної таблиці T3

Назва Ціна Дальність Кут огляду Тип Score
Датчик-001 500 12 90 ІЧ 0.87

Усі інші записи з T1 відсіяні на етапі фільтрації, оскільки не відповідають предикатам fi. Таким чином, у резуль-
татній таблиці залишається лише один об’єкт із найвищим інтегральним балом. Отже, приклад демонструє, як
інструкція T2 визначає підмножину та порядок у T3. Підсумуємо взаємодію таблиць узагальненою схемою конве-
єра та подальшого експорту.

4.	 Зв’язок між таблицями
Схема конвеєра перетворень (T1 → T2 → T3 та експорт):

31 2

1 1 2 3

ff f

T T T T′→ → → ⇒ експорт → БД/Excel/JSON
Реалізація структури у програмному коді
Модель таблиць T1, T2, T3, описану вище, було виконано в програмній реалізації Для підтвердження корек-

тності моделі та демонстрації практичного застосування створено клієнтський модуль на JavaScript, який виконує
повний цикл: імпорт → фільтрація → нормалізація → зважене агрегування → стабільне сортування → виведення
результатів. Нижче наведено фрагмент коду, що виконує сортування об’єктів T1 за критеріями з T2, враховуючи
ваги, напрямки та фільтри.

1.	 Вихідні дані (приклади T1 і T2)
–	 Таблиця T1 містить кілька записів про датчики з атрибутами: назва, ціна, дальність, кут огляду, тип.
–	 Таблиця T2 задає три критерії: ціна, тип та дальність, кожен із вагою, напрямом сортування та умовою

фільтрації.

const T1 = [
	 { id: 1, name: ‘Датчик-001’, price: 500, range: 12, angle: 90, type: ‘ІЧ’ },
	 { id: 2, name: ‘Датчик-002’, price: 700, range: 8, angle: 100, type: ‘Радіо’ },
	 { id: 3, name: ‘Датчик-003’, price: 1200, range: 14, angle: 110, type: ‘ІЧ’ }
];
const T2 = [
	 { field: ‘price’, weight: 0.5, direction: ‘desc’, filter: x => x <= 1000 },
	 { field: ‘type’, weight: 0.3, direction: ‘asc’, filter: x => x === ‘ІЧ’ },
	 { field: ‘range’, weight: 0.2, direction: ‘asc’, filter: x => x >= 10 }
];

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

359

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

2.	 Етап фільтрації
Переходимо до першого кроку конвеєра – відсіюємо записи, що не проходять умови з T2; результат стане вхід-

ним набором для подальшої нормалізації
На першому етапі ми відсіюємо записи, що не відповідають умовам користувача. Умови задаються у таблиці T2

і трактуються як логічна кон’юнкція (тобто, усі предикати мають виконуватися одночасно). У коді це відобража-
ється функцією applyFilters:

function applyFilters(T1, T2) {
	 return T1.filter(row =>
		 T2.every(c => (typeof c.filter === ‘function’) ? c.filter(row[c.field]) : true)
);
}

Таким чином, з T1 формується підмножина рядків, яка задовольняє усім предикатам fj. Це відповідає операції
filterT2(T1) у формулі (11). Отриману підмножину далі потрібно привести до спільної шкали, щоб коректно зважу-
вати критерії.

3.	 Етап нормалізації
Далі на цьому кроці перетворюємо значення атрибутів у діапазон [0, 1], щоб можна було їх коректно зважувати

та порівнювати.
Для числових полів застосовується мін–макс нормалізація:

	
min

, 1 .
max min

() () ()j j jx xu
х

u u x↑ ↓ ↑-
= = -

-
	 (14)

Тобто, якщо критерій зростаючий, більші значення кращі, а якщо спадаючий – більші значення гірші.
Для категоріальних полів можна задати явну утиліту uj: Scj → [0, 1], наприклад: «ІЧ = 1, Радіо = 0». Якщо явної

утиліти немає і фільтр уже звів множину до однієї категорії (як у прикладі з «ІЧ»), утиліта буде константною (=1).
У коді цей механізм реалізовано функцією buildUtilities.

function normalizeWeights(T2) {
	 const sum = T2.reduce((acc, c) => acc + (c.weight || 0), 0) || 1;
	 return T2.map(c => ({...c, weight: (c.weight || 0) / sum }));
}
function buildUtilities(T, T2n) {
	 // попередньо обчислюємо min/max для числових полів
	 const stats = {};
	 for (const c of T2n) {
		 const col = T.map(r => r[c.field]).filter(v => typeof v === ‘number’);
		 if (col.length) {
			 const min = Math.min(...col), max = Math.max(...col);
			 stats[c.field] = { min, max };
		 }
	 }
	 // повертаємо функцію обчислення Score з урахуванням напряму (↑/↓)
	 return (row) => {
		 let score = 0;
		 for (const c of T2n) {
			 const val = row[c.field];
			 let u = 0;
			 if (typeof val === ‘number’ && stats[c.field] && stats[c.field].max !== stats[c.
field].min) {
				 const { min, max } = stats[c.field];
				 const up = (val - min) / (max - min);
	 	 	 	 u = (c.direction === ‘desc’) ? (1 - up) : up; // ↑/↓
			 } else if (typeof val === ‘string’) {
	 	 	 	 // простий приклад утиліти для категорій:
	 	 	 	 // якщо фільтр звузив множину – всі значення 1; інакше – бінарна утиліта за
найчастішою категорією
	 	 	 	 u = 1; // у прикладі після фільтра тип = ‘ІЧ’
			 } else {

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

360

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

	 	 	 	 // якщо нормалізація не визначена – нейтральне 0
				 u = 0;
			 }
			 score += (c.weight || 0) * u;
		 }
		 return score;
	 };
}

4.	 Етап зваженого сортування
Маючи нормалізовані значення та ваги, переходимо до обчислення інтегральної оцінки (Score) і власне впо-

рядкування. Після нормалізації кожному рядку ri ∈ T1 приписується інтегральна оцінка:

	 ,
1

(() ,)
j

k

i j j i c
j

Score r w u a
=

′= ∑ 	 (15)

де jw′ – нормовані ваги ()1 .jw′ =∑
Далі всі записи впорядковуються за цією оцінкою у спадаючому порядку. Якщо кілька рядків отримали одна-

ковий бал, застосовується лексикографічний tie-break (за порядком критеріїв у T2).
5.	 Модифікований Selection Sort з обмеженням R
Щоб уникати різких стрибків у позиціях під час багатокритеріального сортування, застосовуємо стабілізовану

версію Selection Sort із динамічним обмеженням переміщення. Відповідно до (13) використовуємо

 , 0,1, , 1
1

m
R i m

i
= = … -

+

щоб обмежити довжину переміщення елемента на ітерації i (не більше [R] позицій). Якщо найкращий елемент
знаходиться надто далеко, ми «підтягуємо» його за кілька ітерацій короткими суміжними свапами – це зменшує
різкі стрибки у впорядкуванні.

function selectionSortWithR(arr, compare) {
	 const a = arr; // сортуємо in-place
	 const m = a.length;
	 for (let i = 0; i < m - 1; i++) {
	 	 // знаходимо «найкращий» індекс у хвості
		 let best = i;
		 for (let j = i + 1; j < m; j++) {
			 if (compare(a[j], a[best]) < 0) best = j;
		 }
		 if (best === i) continue;
	 	 const R = Math.floor(m / (i + 1)); // обмеження на переміщення за крок
		 const dist = best - i;
		 if (dist > R) {
	 	 	 // пересуваємо елемент на R позицій угору суміжними свапами
			 for (let s = 0; s < R; s++) {
				 const idx = best - s;
				 [a[idx], a[idx - 1]] = [a[idx - 1], a[idx]];
			 }
		 } else {
	 	 	 // звичайний свап selection sort
			 [a[i], a[best]] = [a[best], a[i]];
		 }
	 }
	 return a;
}

Обмеження R робить алгоритм стабільним і передбачуваним навіть за складних налаштувань ваг.
6.	 Повний цикл: від T1 до T3

Зведемо усе разом у підсумковій функції, яка відтворює конвеєр T ′1 → T3 під керуванням T2.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

361

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Завершальна функція поєднує всі попередні кроки:
1.	 Виконує фільтрацію;
2.	 Нормує ваги;
3.	 Будує утиліти та обчислює Score;
4.	 Виконує стабільне сортування з урахуванням напрямку та пріоритетів.

function computeT3(T1, T2) {
	 const T1_filtered = applyFilters(T1, T2);
	 const T2n = normalizeWeights(T2); // нормування ваг
	 const scoreOf = buildUtilities(T1_filtered, T2n);
	 // формуємо технічні записи для стабілізації порівняння
	 const withScore = T1_filtered.map((row, idx) => ({
		 row,
		 idx,
		 score: scoreOf(row)
	 }));
	 // компаратор: менше → має йти раніше
	 const cmp = (a, b) => {
	 	 if (b.score !== a.score) return (b.score - a.score) < 0 ? -1 : 1; // спадання score
	 	 return a.idx - b.idx; // стабільність
	 };
	 selectionSortWithR(withScore, cmp);
	 return withScore.map(o => o.row);
}
const T3 = computeT3(T1, T2);
console.table(T3);

Підсумок: T3 обчислюється повністю в браузері, без серверної логіки, строго відповідно до інструкції T2.
7.	 Інтерфейс вебвзаємодії
Інтерфейс реалізовано як клієнтський вебдодаток без серверної логіки.
Першим після запуску програми користувач бачить початкове вікно з кнопкою імпорту та порожніми пане-

лями T1 /T2 (рис. 1).

Рис. 1. Стартове вікно інтерфейсу «Сортування»: кнопка імпорту та порожні області T1-списку
й панелі критеріїв T2

Далі сценарій простий: імпорт T1 → налаштування T2 → одержання T3 → (за потреби) експорт.
Основні елементи інтерфейсу
Спершу окреслимо складові вікна, а далі – їхню поведінку. Формально вікно описується кортежем:

	 W = (H, F, S, B, E)…	 (16)

де: H – заголовок, інструкції; F – форма імпорту та налаштувань критеріїв Т2 = (ci, wi, di, fi); S – секція з відобра-
женням результату T3; B – кнопки управління; E – панель повідомлень (класи error/warning/info, коди E001–E003,
W001, S001–S003).

Після імпорту активуються поля T2, після запуску обробки з’являється T3.
7.1.	 Логіка станів і подій (скінченний автомат)
Переходимо від складу до реакції системи. Логіку взаємодії подаємо як скінченний автомат:

	 A = (Q, Σ, δ, g0),	 (17)

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

362

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

де

Q = {Idle, Loaded, Querying, Computing, Viewing, Exported, Error};

Σ = {ev_import, ev_define_query, ev_apply_f3, ev_export, ev_reset, ev_error};

q0 = Idle.

Ключові переходи:
–	 δ(Idle, ev_import)=Loaded: читання T1 (SheetJS), застосування f1 ⇒ T ′1, відображення в S, повідомлення

S001.
–	 δ(Loaded, ev_define_query) = Querying: формування T2 у панелі критеріїв.
–	 δ(Querying, ev_apply_f3) = Computing: виконання f3 ⇒ T3.
–	 δ(Computing,⋅) = Viewing: показ T3, S002 (Сортування завершено, m′ рядків).
–	 δ(Viewing, ev_export) = Exported: експорт (CSV/JSON або REST), S003.
–	 δ(⋅, ev_error) = Error: показ коду помилки (E001–E003) у E.
Перерахунок T3 відбувається лише коли це доцільно:

	 recompute(T3) ⇔ (T ′1 ≠ ∅) ∧ valid(T2) ∧ e ∈{ev_define_query, ev_apply_f3}.	 (18)

7.2.	 Валідація та дружні підказки
Щоб уникнути помилок до запуску f3 перевіряємо:
–	 унікальність ci та відповідність fi типам атрибутів;
–	 ваги: якщо 1,iw ≠∑ система пропонує автоматичну нормалізацію (wi ← 1/k; W001);
–	 заборонені або суперечливі фільтри (наприклад, «ціна < 0» → E002).
Усі повідомлення подаються у E з короткою інструкцією виправлення (напр., «E002: Перевірте фільтри»).

Після імпорту в S відображається T ′1 з підсвіткою очищених/нормалізованих полів; це допомагає користувачу
побачити ефект f1 «в один клік».

7.3.	 Продуктивність і плавність роботи
Щоб інтерфейс лишався відгукливим для наборів розміру m ≈ 103, застосовано три взаємодоповнювальні

прийоми:
Debounce (~200 мс) на редагуваннях T2 – об’єднує серію змін у один перерахунок, зменшуючи непотрібні

обчислення.
Віртуалізація рендеру в Handsontable – відмальовуються лише видимі рядки (плюс невеликий буфер), що

забезпечує плавний скрол.
Web Workers для m  3000 – обчислення f3 виконуються в окремому потоці, тож головний UI не блокується,

а результат одразу з’являється у стані Viewing (див. рис. 2).
Додатково кешуються мін/макс для нормалізації, використовується стабільний tie-break та групування онов-

лень через requestAnimationFrame – це зменшує дрібні «ривки» і підсилює загальну плавність.

Рис. 2. Стан Viewing: зліва – панель T2 (поля ci, wi, di, fi), справа – табличний результат T3
(список сповіщувачів), унизу в панелі E – повідомлення S002

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

363

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

7.4.	 Збереження, історія та аудит
Нарешті, шаблони T2 (часті запити) зберігаються у localStorage; ключові дії (імпорт, запуск f3, експорт) та

контрольні хеші – в IndexedDB, що забезпечує повторюваність і аудит. Експорт у файли (CSV/JSON) не потребує
мережі; REST-експорт – окремий опційний сценарій.

Результати дослідження
Експериментальну перевірку моделі проведено на наборі даних про охоронні датчики (табл. 4).

Таблиця 4
Показники ефективності (середнє ± SD, n = 20)

Операція Час (мс) Точність/якість Пам’ять (МБ)
Імпорт T1 + f1 145 ± 11 дублікат – 96.1 ± 1.8 % 2.9 ± 0.2
Формування T2 85 ± 7 – 0.5 ± 0.1
f3 305 ± 24 F1 (тексти) ≈ 0.945 4.6 ± 0.3
Експорт (лок.) 170 ± 10 100 % коректність 1.4 ± 0.1
Експорт (REST) 405 ± 28 100 % коректність 2.0 ± 0.1

Дані: 1000 записів (m = 1000), 12 атрибутів (n = 12), CSV ≈ 200 КБ; 10 % дублікатів, 8 % пропусків, 6 % тек-
стових розбіжностей («ІЧ»/«інфрачервоний»/«IR»). Середовище: Chrome 128.0, Windows 11, Intel Core i5-12400,
8 ГБ RAM. Кожний вимір – середнє ±\pm± SD за n = 20 прогонів.

Метрики.
–	 Імпорт + f1: 145 ± 11мс; виявлення дублікатів – 96.1 ± 1.8 % (поріг Левенштейна θ = 2).
–	 Формування T2: 85 ± 7 мс (5–6 критеріїв).
–	 f3 (фільтрація → проєкція → сортування): 305 ± 24 мс; після фільтрації m′ = 670 ± 18; зменшення «стрибків»

позицій на 22.3 ± 3.1 % завдяки Ri = m/(i + 1).
–	 Експорт: локальний CSV/JSON – 170 ± 10мс; REST → MongoDB – 405 ± мс.
Якість нечіткого зіставлення (тексти). На розміченій підвибірці (200 пар): precision = 0.95, recall = 0.94,

F1 = 0.945 (попередня нормалізація юнікоду, регістру, варіантів «IR/ІЧ», базовий словничок синонімів).
Залежність часу виконання оператора f3 від кількості рядків m подано на рис. 3.

Криві перетинаються в зоні m  150, далі запропонований метод стабільніший (менші варіації часу та переста-
новок). Нечітке порівняння підвищило точність обробки текстів із 84 % до 95 %. Tie-break за індексом забезпечив
100 % відтворюваність.

Обговорення результатів
Отримані експериментальні дані підтверджують, що запропонована модель досягає заявленої мети – забезпе-

чити повний цикл взаємодії з табличними даними в межах клієнтського вебінтерфейсу без обов’язкової серверної

Рис. 3. Час f3 залежно від m (100–2000): суцільна крива – модифікований Selection Sort із обмеженням Ri;
пунктир – базовий Array.prototype.sort з багатокритеріальним компаратором

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

364

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

логіки. Ключовою перевагою є автономність: усі етапи – від імпорту T1 та очищення/нормалізації (f1) до форму-
вання запиту T2 ( f2) і побудови результатної таблиці T3 ( f3) – виконуються у браузері, що знімає вимоги до інфра-
структури і спрощує розгортання в закритих мережах, навчальних аудиторіях та офлайнових середовищах [10].
Це не лише скорочує організаційні витрати, а й підвищує прозорість процесу, оскільки вся логіка доступна для
аудиту на стороні користувача.

Друга сильна сторона – стабільність упорядкування. Запроваджене динамічне обмеження переміщення
R = m/(i + 1) у модифікованому Selection Sort зменшує «стрибки» позицій на 20–25 % у порівнянні з базовим під-
ходом, що особливо помітно у багатокритеріальних сценаріях, коли незначна зміна ваг або фільтрів може ради-
кально змінювати порядок елементів [11]. Практично це означає більш передбачувану поведінку списків і менше
когнітивне навантаження на користувача під час ітеративного підбору критеріїв.

Третя перевага – стійкість до «шуму» у текстових полях. Використання відстані Левенштейна дає змогу корек-
тно об’єднувати близькі варіанти написання (наприклад, «ІЧ», «інфрачервоний») і тим самим зменшує кількість
хибних відсівів під час фільтрації та покращує консистентність ранжування [7], [8]. Це критично для реальних
даних, де часто трапляються орфографічні помилки, абревіатури або різні локалізації.

Разом із тим, модель має обмеження. По-перше, зі зростанням кількості рядків (приблизно після m>3000)
відчутними стають обмеження однопотокового виконання та пам’яті браузера; для збереження інтерактивності
доцільно залучати Web Workers або WebAssembly, а також віртуалізацію відображення таблиць. По-друге, опцій-
ний REST-експорт у зовнішні БД (MySQL/MongoDB/SQLite) неминуче знижує автономність і вимагає серверної
точки прийому; утім, він чітко відокремлений від базового сценарію та активується лише за явним запитом корис-
тувача [15], [16]. По-третє, у порівнянні з класичними MCDM-методами (WSM/SAW, TOPSIS, PROMETHEE)
запропонований підхід є простішим у впровадженні та пояснюванні, але менш потужним для групового при-
йняття рішень і складних узгоджень пріоритетів [13].

Практична значущість моделі полягає у поєднанні прозорої формалізації (T1–T2–T3, f1–f3), стабільного впо-
рядкування та нечіткої обробки тексту в повністю клієнтському режимі. Це робить рішення придатним для освіт-
ніх симуляторів, адмінпанелей та локальних аналітичних інструментів, де важливі швидкий старт, контрольова-
ність логіки та відсутність зовнішніх залежностей. Майбутні роботи логічно спрямувати на масштабування (Web
Workers/WASM), інтеграцію з методами MCDM/ML для автоматичного налаштування ваг, а також на розширення
механізмів безпеки даних у браузері.

Висновки
Створено формалізовану клієнтську модель вебінтерфейсу для багатокритеріального сортування структуро-

ваних табличних даних із обмеженим переміщенням елементів. Розробка спирається на поетапну методологію:
математичне подання даних (T1–T2–T3), формалізацію дій користувача та логіки інтерфейсу, а також програмну
реалізацію з експериментальною перевіркою.

Основні результати:
1.	 Виконано огляд сучасних рішень сортування у веб-інтерфейсах і виявлено ключові обмеження SheetJS/

XLSX, PapaParse, Handsontable щодо покрокового відображення, стабілізації порядку за «рівних» ключів, під-
тримки нечітких текстових запитів і повної client-side обробки. Отримані висновки обґрунтовують потребу у фор-
малізованому автономному підході.

2.	 Сформовано трикомпонентну структуру T1–T2–T3 з операторами T1 → f1 → T ′1 → f2 → T2 → f3 → T3, де T2
подано як множину четвірок (ci, wi, di, fi). Запропоновано адаптивне сортування на базі модифікованого Selection
Sort з динамічним обмеженням переміщення R = m/(i + 1) та стабілізацією tie-break за початковим індексом; порів-
няння виконується за (()) , ,k k k k

k

Score r w r c f= ⋅j∑ або лексикографічно (j1, j2, …). Логіку інтерфейсу формалі-

зовано як скінченний автомат (вікна/події/стани) із валідацією та реактивним оновленням T3; підтримано нечітке
зіставлення (зокрема, за відстанню Левенштейна). Модель забезпечує автономність, прозорість і відтворюваність
обробки.

3. На переліках параметричних об’єктів (охоронні сповіщувачі) підтверджено коректність перетворень і прак-
тичну придатність рішення: зафіксовано зменшення «стрибків» порядку завдяки обмеженню R, стабільність упо-
рядкування при повторному запуску й зміні критеріїв (через tie-break), зручність покрокової взаємодії та гнуч-
кість налаштувань у порівнянні з аналогами.

Практична цінність полягає у можливості застосування підходу для побудови автономних адаптивних інтер-
фейсів в аналітиці, освітніх симуляторах, адміністративних панелях і CRM/ERP-контекстах; формальна структура
й прозорість кроків полегшують аудит і повторне використання. Подальші дослідження доцільно спрямувати
на масштабування для великих обсягів, розширення сценаріїв інтеграції, уведення збереження сесій і шаблонів
запитів, а також на автоматичну оптимізацію ваг/критеріїв залежно від контексту.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

365

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Список використаної літератури
1.	 Guo M., Xing Y., Xu Y. Data Cleaning: Workflow and Strategies in Real-World Data Research. Interactive Journal

of Medical Research. 2023. Vol. 12, e44310. DOI: 10.2196/44310.
2.	 Chen Z., Cafarella M. Integrating Spreadsheet Data via Accurate and Low-Effort Extraction. In: Proceedings

of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014. P. 1126–1135.
DOI: 10.1145/2623330.2623617

3.	 SheetJS. SheetJS Community Edition: Documentation (версія 0.20.3) [Електронний ресурс]. URL:
https://docs.sheetjs.com/docs/ (дата звернення: 25.09.2025).

4.	 Papa Parse. Documentation (версія 5.5.3) [Електронний ресурс]. URL: https://www.papaparse.com/docs (дата
звернення: 25.09.2025).

5.	 Handsontable. JavaScript Data Grid – Documentation (версія 16.0.1) [Електронний ресурс]. URL:
https://handsontable.com/docs/javascript-data-grid/ (дата звернення: 25.09.2025).

6.	 Huang Y., Miao J., Weng D., Perer A., Wu Y. StructVizor: Interactive Profiling of Semi-Structured Textual
Data. In: CHI ’25: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems. 2025.
DOI: 10.1145/3706598.3713484.

7.	 Berger B., Waterman M. S., Yu Y. W. Levenshtein distance, sequence comparison and biological database search.
IEEE Transactions on Information Theory. 2021. Vol. 67, no. 6. P. 3287–3294. DOI: 10.1109/TIT.2020.2996543

8.	 Firmansyah M., Deswana D. Application of the Levenshtein Algorithm in Web-Based Knowledge Management
Systems. JUSIFO. 2024. Vol. 10, no. 2. P. 99–106. DOI: 10.19109/jusifo.v10i2.21951

9.	 Harel D. Statecharts: a visual formalism for complex systems. Science of Computer Programming. 1987. Vol. 8,
no. 3. P. 231–274. DOI: 10.1016/0167-6423(87)90035-9

10.	Pohl E., Geldermann J. PROMETHEE-Cloud: a web app to support PROMETHEE-based multi-criteria decision
analysis. EURO Journal on Decision Processes. 2024. Vol. 12, 100053. DOI: 10.1016/j.ejdp.2024.100053

11.	Razavi Hajiagha S. H., Heidary Dahooie J., Meidutė-Kavaliauskienė I., Govindan K. A new dynamic multi-
attribute decision making method based on Markov chain and linear assignment. Annals of Operations Research. 2022.
Vol. 315, no. 1. P. 159–191. DOI: 10.1007/s10479-022-04644-0

12.	Hamel A. H., Kostner D. Multi-weight ranking for multi-criteria decision making. Neural Computing and
Applications. 2024. DOI: 10.1007/s00521-024-10626-z

13.	Taherdoost H., Madanchian M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia.
2023. Vol. 3, no. 1. P. 77–87. DOI: 10.3390/encyclopedia3010006

14.	Su J., Zhu Q., Jiang Y., Xiao X. A Multi-Criteria Group Decision-Making Method for Risk Assessment of Live-
Streaming E-Commerce Platforms. Journal of Theoretical and Applied Electronic Commerce Research. 2023. Vol. 18,
no. 2. P. 1126–1141. DOI: 10.3390/jtaer18020057

15.	Győrödi C. A., Győrödi R., Olah A., Pecherle G. MongoDB vs. Document-Based MySQL: A Comparative Study
on the Top of Docker. Big Data and Cognitive Computing. 2022. Vol. 6, no. 2. P. 49. DOI: 10.3390/bdcc6020049

16.	Alyasiri B., Sahi B., Al-Khafaji N. NoSQL: Will it be an alternative to a relational database? MySQL vs MongoDB
comparison. In: Proceedings of the 2nd International Multi-Disciplinary Conference: Integrated Sciences and Technologies
(IMDC-IST 2021), 7–9 September 2021, Sakarya, Turkey. EAI, 2022. DOI: 10.4108/eai.7-9-2021.2314925

References
1.	 Guo, M., Xing, Y., & Xu, Y. (2023). Data cleaning: Workflow and strategies in real-world data research. Interactive

Journal of Medical Research, 12, e44310. https://doi.org/10.2196/44310
2.	 Chen, Z., & Cafarella, M. (2014). Integrating spreadsheet data via accurate and low-effort extraction. In Proceedings

of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1126–1135). https://
doi.org/10.1145/2623330.2623617

3.	 SheetJS. (2025). SheetJS Community Edition: Documentation (Version 0.20.3). Retrieved September 25, 2025,
from https://docs.sheetjs.com/docs/

4.	 Papa Parse. (2025). Documentation (Version 5.5.3). Retrieved September 25, 2025, from
https://www.papaparse.com/docs

5.	 Handsontable. (2025). JavaScript Data Grid – Documentation (Version 16.0.1). Retrieved September 25, 2025,
from https://handsontable.com/docs/javascript-data-grid/

6.	 Huang, Y., Miao, J., Weng, D., Perer, A., & Wu, Y. (2025). StructVizor: Interactive profiling of semi-structured
textual data. In CHI ’25: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3706598.3713484

7.	 Berger, B., Waterman, M. S., & Yu, Y. W. (2021). Levenshtein distance, sequence comparison and biological
database search. IEEE Transactions on Information Theory, 67(6), 3287–3294. https://doi.org/10.1109/TIT.2020.2996543

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

366

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

8.	 Firmansyah, M., & Deswana, D. (2024). Application of the Levenshtein algorithm in web-based knowledge
management systems. JUSIFO, 10(2), 99–106. https://doi.org/10.19109/jusifo.v10i2.21951

9.	 Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3),
231–274. https://doi.org/10.1016/0167-6423(87)90035-9

10.	Pohl, E., & Geldermann, J. (2024). PROMETHEE-Cloud: A web app to support PROMETHEE-based multi-
criteria decision analysis. EURO Journal on Decision Processes, 12, 100053. https://doi.org/10.1016/j.ejdp.2024.100053

11.	Razavi Hajiagha, S. H., Heidary Dahooie, J., Meidutė-Kavaliauskienė, I., & Govindan, K. (2022). A new dynamic
multi-attribute decision making method based on Markov chain and linear assignment. Annals of Operations Research,
315(1), 159–191. https://doi.org/10.1007/s10479-022-04644-0

12.	Hamel, A. H., & Kostner, D. (2024). Multi-weight ranking for multi-criteria decision making. Neural Computing
and Applications. Advance online publication. https://doi.org/10.1007/s00521-024-10626-z

13.	Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts.
Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/encyclopedia3010006

14.	Su, J., Zhu, Q., Jiang, Y., & Xiao, X. (2023). A multi-criteria group decision-making method for risk assessment
of live-streaming e-commerce platforms. Journal of Theoretical and Applied Electronic Commerce Research, 18(2),
1126–1141. https://doi.org/10.3390/jtaer18020057

15.	Győrödi, C. A., Győrödi, R., Olah, A., & Pecherle, G. (2022). MongoDB vs. document-based MySQL: A comparative
study on the top of Docker. Big Data and Cognitive Computing, 6(2), 49. https://doi.org/10.3390/bdcc6020049

16.	Alyasiri, B., Sahi, B., & Al-Khafaji, N. (2022). NoSQL: Will it be an alternative to a relational database? MySQL
vs MongoDB comparison. In Proceedings of the 2nd International Multi-Disciplinary Conference: Integrated Sciences
and Technologies (IMDC-IST 2021), 7–9 September 2021, Sakarya, Turkey. EAI. https://doi.org/10.4108/eai.7-9-
2021.2314925

Дата першого надходження рукопису до видання: 27.09.2025
Дата прийнятого до друку рукопису після рецензування: 23.10.2025

Дата публікації: 28.11.2025

