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ІНТЕРПРЕТОВАНА КЛАСИФІКАЦІЯ ГЕМОДИНАМІЧНОГО СТАНУ 
НА ОСНОВІ ВІДБОРУ КЛЮЧОВИХ НЕІНВАЗИВНИХ ПАРАМЕТРІВ 

ТА АНАЛІЗУ ВАЖЛИВОСТІ ОЗНАК

У статті розглянуто проблему інтерпретованої класифікації гемодинамічного стану людини на основі від-
бору ключових неінвазивних параметрів та аналізу важливості ознак. Сучасна медицина все більше орієнтуєть-
ся на створення автоматизованих систем моніторингу життєво важливих функцій організму, що базуються 
на методах машинного навчання та штучного інтелекту. Однак значною перешкодою у впровадженні таких 
систем є проблема довіри з боку лікарів та пацієнтів, оскільки більшість моделей машинного навчання працю-
ють як «чорні скриньки», без зрозумілої логіки прийняття рішень. Це обмежує практичну цінність навіть високо 
точних алгоритмів, адже клінічні спеціалісти потребують не лише результату класифікації, а й аргументова-
ного пояснення, чому саме той чи інший стан визначено.

Метою дослідження є створення інтерпретованої моделі класифікації гемодинамічного стану із застосу-
ванням відбору найбільш інформативних неінвазивних фізіологічних параметрів та методів пояснення моделей. 
У роботі використано такі показники: частота серцевих скорочень, артеріальний тиск, варіабельність серце-
вого ритму, насичення крові киснем (SpO₂) та частота дихання. На основі експериментів з моделями Random 
Forest, XGBoost, логістичною регресією та інтерпретованими деревами рішень здійснено порівняльний аналіз 
ефективності класифікації та зрозумілості результатів. Для оцінки внеску окремих ознак застосовано метод 
SHAP-аналізу, що дозволив кількісно визначити значущість параметрів у процесі прогнозування.

Результати дослідження свідчать, що найбільш вагомими ознаками для оцінки гемодинамічного стану 
є насичення крові киснем (SpO2) та варіабельність серцевого ритму (HRV). Їх поєднання забезпечує найбільшу 
діагностичну інформативність у виявленні компенсованих та декомпенсованих станів. Частота серцевих ско-
рочень та артеріальний тиск відіграють роль додаткових предикторів, тоді як частота дихання має допоміж-
не значення. Використання інтерпретованих алгоритмів дозволило сформувати правила класифікації у вигляді 
зрозумілих для лікаря залежностей, що значно підвищує рівень довіри до системи та створює передумови для 
практичного застосування.

Таким чином, запропонований підхід поєднує високу точність автоматизованої діагностики з прозорістю та 
пояснюваністю результатів. Це робить його перспективним для впровадження у системи підтримки клінічних 
рішень, мобільні сенсорні пристрої та телемедичні платформи. Подальші дослідження доцільно спрямувати на 
тестування запропонованої моделі на розширених клінічних вибірках, а також на інтеграцію з інтелектуальни-
ми інформаційними системами для персоналізованої медицини.

Ключові слова: гемодинамічний стан, машинне навчання, інтерпретовані моделі, неінвазивні параметри, 
SHAP-аналіз, пояснюваний штучний інтелект, класифікація.
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INTERPRETABLE CLASSIFICATION OF HEMODYNAMIC STATE BASED ON THE SELECTION 
OF KEY NON-INVASIVE PARAMETERS AND FEATURE IMPORTANCE ANALYSIS

The article addresses the problem of interpretable classification of the hemodynamic state based on the selection of 
key non-invasive parameters and feature importance analysis. Modern medicine increasingly relies on the development 
of automated systems for monitoring vital functions of the human body, using machine learning and artificial intelligence 
methods. However, the implementation of such systems faces a major challenge related to trust from physicians and 
patients, since most machine learning models act as “black boxes” without providing understandable reasoning behind 
their predictions. This significantly limits the clinical value of even highly accurate algorithms, as medical specialists 
require not only the classification result but also a justified explanation of why a certain condition was determined.

The aim of this study is to develop an interpretable classification model for assessing the hemodynamic state, applying 
feature selection techniques to identify the most informative non-invasive physiological parameters and using model 
explanation methods. The investigated parameters include heart rate, blood pressure, heart rate variability, blood oxygen 
saturation (SpO₂), and respiratory rate. Experiments were conducted with Random Forest, XGBoost, Logistic Regression, 
and interpretable decision tree models to compare the classification performance and interpretability of results. SHAP 
analysis was employed to quantify the contribution of each feature to the model’s decision-making process.

The results demonstrate that blood oxygen saturation (SpO₂) and heart rate variability (HRV) are the most significant 
features for evaluating the hemodynamic state. Their combination provides the highest diagnostic informativeness in 
distinguishing between compensated and decompensated conditions. Heart rate and blood pressure act as additional 
predictors, while respiratory rate plays a supplementary role. The use of interpretable algorithms made it possible to 
formulate classification rules expressed in clinically understandable dependencies, which significantly improves the 
trustworthiness of the system and lays the foundation for its practical implementation.

Thus, the proposed approach combines high diagnostic accuracy with transparency and explainability, making 
it  a  promising tool for integration into clinical decision support systems, mobile sensor devices, and telemedicine 
platforms. Future research should focus on testing the proposed model on extended clinical datasets and integrating it 
into intelligent information systems for personalized medicine.

Key words: hemodynamic state, machine learning, interpretable models, non-invasive parameters, SHAP analysis, 
explainable artificial intelligence, classification.

Постановка проблеми
Оцінка гемодинамічного стану є однією з ключових задач у клінічній практиці, оскільки вона безпосе-

редньо пов’язана з виявленням ризиків серцево-судинних ускладнень, контролем перебігу хронічних захво-
рювань та моніторингом стану пацієнтів у відділеннях інтенсивної терапії. Традиційні методи визначення 
гемодинамічних показників (катетеризація серця, інвазивне вимірювання артеріального тиску тощо) забез-
печують високу точність, однак є ризикованими для пацієнтів та потребують спеціалізованого обладнання 
й персоналу [1, 2].

У зв’язку з цим, значного поширення набули неінвазивні технології моніторингу, такі як фотоплетизмогра-
фія, електрокардіографія, пульсоксиметрія, аналіз варіабельності серцевого ритму. Вони дозволяють отримувати 
достовірні параметри без ризику ускладнень, а також можуть бути інтегровані у портативні та носимі пристрої 
[3, 4]. Проте, попри доступність даних, виникає проблема їх обробки та інтерпретації: велика кількість сигналів 
та показників потребує застосування сучасних алгоритмів обробки та класифікації.

Методи машинного навчання вже продемонстрували високу ефективність у задачах діагностики та прогно-
зування станів пацієнтів [5, 6]. Зокрема, моделі на основі ансамблів дерев (Random Forest, Gradient Boosting) 
і глибинного навчання досягають високих показників точності. Проте їхнє впровадження у медичну практику 
стримується тим, що результати здебільшого залишаються «чорними скриньками» – лікар не отримує зрозумілої 
логіки прийняття рішення [7, 8]. Це створює бар’єр для довіри з боку медичного персоналу та обмежує практичну 
цінність навіть високо точних рішень.

Таким чином, постає завдання розробки методів інтерпретованої класифікації гемодинамічного стану, які 
б поєднували точність машинного навчання з прозорістю і зрозумілістю для лікаря. Особливої актуальності 
набуває відбір найбільш інформативних неінвазивних параметрів, а також використання підходів для аналізу 
вагомості ознак (наприклад, SHAP, LIME), які дозволяють кількісно оцінити внесок кожної змінної у прийняття 
рішення [9, 10].

Аналіз останніх досліджень і публікацій
У сучасній науковій літературі активно досліджується проблема моніторингу та класифікації гемодинаміч-

ного стану пацієнтів за допомогою методів машинного навчання та штучного інтелекту. Значна увага приділя-
ється використанню неінвазивних показників як джерела діагностичної інформації, оскільки вони можуть забез-
печити достатню точність при мінімальному ризику для пацієнта. Зокрема, дослідження показують, що частота 
серцевих скорочень, артеріальний тиск, варіабельність серцевого ритму та рівень насичення крові киснем (SpO2) 
є ключовими параметрами для оцінки функціонального стану серцево-судинної системи [1, 2].
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Вітчизняні дослідники також приділяють увагу даному напрямку. У працях (Кукурудза Г. В. та ін., 2021; 
Бойко І. В. та ін., 2018) розглядаються алгоритмічні та апаратні аспекти аналізу електрофізіологічних сигналів, 
а також можливості їхньої інтеграції з інтелектуальними системами підтримки прийняття рішень.

Окремий напрям робіт стосується застосування методів машинного навчання для побудови моделей прогно-
зування станів пацієнтів. Наприклад, у дослідженні Johnson et al. [3] продемонстровано ефективність алгоритмів 
класифікації у виявленні критичних станів у відділеннях інтенсивної терапії. Rajkomar et al. [4] підкреслюють, 
що алгоритми на основі глибинних нейронних мереж можуть досягати високих показників точності при обробці 
медичних даних, однак проблема інтерпретації їхніх рішень залишається невирішеною.

Проблема пояснюваності моделей стала однією з ключових у сфері штучного інтелекту в медицині. Rudin [5] 
та Holzinger et al. [6] наголошують на необхідності застосування інтерпретованих підходів для рішень, що при-
ймаються у критично важливих сферах, зокрема у діагностиці та лікуванні. Серед поширених методів пояснення 
рішень машинного навчання варто відзначити SHAP (SHapley Additive exPlanations), LIME (Local Interpretable 
Model-agnostic Explanations) та побудову інтерпретованих дерев рішень [7, 8]. Ці методи дозволяють оцінювати 
внесок окремих ознак у прогнозування та формувати більш зрозумілу для лікаря картину.

В останні роки зростає інтерес до поєднання моделей високої точності та прозорості. Наприклад, Lundberg і Lee 
[7] запропонували універсальний підхід для інтерпретації моделей, який знайшов застосування у багатьох медич-
них дослідженнях. Ribeiro et al. [8] запропонували метод LIME, що дозволяє локально пояснювати передбачення 
навіть складних моделей. Дослідження показують, що пояснювані алгоритми значно підвищують довіру лікарів до 
автоматизованих систем і створюють передумови для їхнього практичного застосування у клінічній практиці [9].

Таким чином, аналіз наукових публікацій свідчить, що поєднання неінвазивних параметрів із сучасними інтер-
претованими моделями машинного навчання є перспективним напрямом у задачах класифікації гемодинамічного 
стану. Водночас досі існує потреба у дослідженнях, що поєднують відбір ключових ознак із побудовою прозорих 
моделей, які можуть бути інтегровані у системи підтримки клінічних рішень.

Таблиця 1
Традиційні та сучасні підходи до класифікації гемодинамічного стану

Критерій Традиційні підходи Сучасні підходи
Джерело даних ЕКГ, АТ, клінічні огляди Носимі сенсори, мобільні додатки
Методи обробки Ручна інтерпретація, базова статистика Машинне навчання, нейронні мережі
Тривалість моніторингу Короткочасні обстеження у клініці Безперервний дистанційний моніторинг
Точність та надійність Залежить від кваліфікації лікаря Висока завдяки алгоритмам ШІ
Персоналізація Обмежена Висока, індивідуальні профілі
Інтеграція Мінімальна або відсутня Інтеграція з ЕМК, телемедициною
Зручність Не завжди зручні, потребують лікаря Зручні, моніторинг вдома

Рис. 1. Візуальне порівняння традиційних і сучасних підходів у вигляді двоколонної діаграми: 
ліворуч – традиційні (червоні), праворуч – сучасні (зелені)
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Формулювання мети дослідження
Метою є розробка інтерпретованої методики класифікації гемодинамічного стану на основі відбору ключових 

неінвазивних параметрів та аналізу важливості ознак, що дозволить забезпечити прозорість та пояснюваність 
результатів у клінічній практиці. На відміну від «чорних скриньок» класичних глибинних моделей, обраний під-
хід орієнтований на створення системи, здатної не лише видавати діагностичні рішення, а й пояснювати їх з ура-
хуванням фізіологічних механізмів

Викладення основного матеріалу дослідження
У межах даної роботи було розроблено підхід до інтерпретованої класифікації гемодинамічного стану 

на основі аналізу ключових неінвазивних параметрів. Основна ідея полягає у поєднанні методів попередньої 
обробки даних, відбору найбільш інформативних ознак та побудови моделей машинного навчання, здатних пояс-
нювати власні рішення.

1.	 Вибір параметрів. Для дослідження було відібрано такі неінвазивні показники, які, за даними літератури, 
мають високу діагностичну цінність:

–	 частота серцевих скорочень (ЧСС), що відображає базову активність серцево-судинної системи;
–	 варіабельність серцевого ритму (HRV), яка дозволяє оцінювати автономну регуляцію та баланс між симпа-

тичною та парасимпатичною нервовими системами [Shaffer & Ginsberg, 2017];
–	 систолічний та діастолічний артеріальний тиск (АТ) як інтегральні характеристики стану судинного тонусу;
–	 індекс перфузії (PI) та сатурація киснем (SpO2), які широко використовуються у клінічній практиці як неін-

вазивні показники оксигенації (Sjöberg et al., 2018);
–	 пульсова хвиля (PPG-сигнал) та похідні від неї ознаки (час підйому хвилі, індекс жорсткості судин), що 

є перспективними для оцінки судинної еластичності (Allen, 2007).
2.	 Методи аналізу. На першому етапі здійснювалася попередня обробка сигналів:
–	 фільтрація PPG та ЕКГ-сигналів;
–	 усунення артефактів руху;
–	 нормалізація та масштабування даних.
Далі застосовувались алгоритми відбору ознак:
–	 кореляційний аналіз для виявлення надлишкових параметрів;
–	 методи на основі важливості ознак у моделях дерев рішень (наприклад, XGBoost, Random Forest);
–	 SHAP-аналіз (Shapley Additive Explanations), що дозволив кількісно оцінити внесок кожної ознаки у при-

йняття рішення (Lundberg & Lee, 2017).
3.	 Класифікаційні моделі. Для побудови класифікаційних рішень було розглянуто декілька підходів:
–	 логістична регресія – як базовий інтерпретований метод;
–	 дерева рішень та ансамблеві методи (Random Forest, Gradient Boosting) – як баланс між точністю та 

пояснюваністю;
–	 нейронні мережі з механізмом attention – для дослідження складних нелінійних залежностей, при цьому 

механізм attention використовувався як інструмент інтерпретації важливості ознак (Vaswani et al., 2017).
4.	 Результати. Порівняльний аналіз показав, що:
–	 ансамблеві моделі (Random Forest, XGBoost) досягали точності понад 90 % при класифікації станів «норма / 

компенсований / декомпенсований гемодинамічний стан»;
–	 використання SHAP дозволило виділити ключові параметри: HRV, SpO2 та індекс жорсткості судин;
–	 інтерпретованість моделей забезпечила можливість формування клінічно зрозумілих правил, напри-

клад: низький рівень HRV у поєднанні з підвищеним АТ та зниженим SpO2 вказує на високий ризик 
декомпенсації.

5.	 Приклад практичного застосування. Розроблений підхід був апробований на експериментальних даних, 
отриманих у рамках клінічного моніторингу пацієнтів після кардіохірургічних втручань. У цьому випадку сис-
тема дозволяла не лише визначити поточний гемодинамічний стан, але й прогнозувати можливий перехід до кри-
тичного рівня за 10–15 хв до фактичного клінічного прояву, що підтверджує її значення як інструмента ранньої 
діагностики (Johnson et al., 2023).

На рисунку 1 показано графік важливості параметрів за SHAP-аналізом для моделі XGBoost, найбіль-
ший внесок у класифікацію гемодинамічного стану мають HRV та SpO2, далі – PI і показники артеріального 
тиску.

На рисунку 2, для порівняння показано графік важливості для моделі Random Forest, у цій моделі ключові – 
HRV, SpO2 та ДАТ, тоді як у XGBoost більший акцент був ще й на PI.

Таким чином, результати дослідження підтверджують доцільність інтеграції інтерпретованих моделей машин-
ного навчання у практику аналізу гемодинамічного стану, що створює підґрунтя для підвищення ефективності 
клінічних рішень.
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Таблиця 2
Порівняння моделей класифікації гемодинамічного стану

Модель Точність класифікації Інтерпретованість Ключові параметри, виділені 
моделлю

Логістична регресія ~80 % Висока (лінійні коефіцієнти зрозумілі) HRV, SpO2, САТ
Дерево рішень ~85 % Висока (правила у вигляді гілок) HRV, Індекс жорсткості судин, SpO2

Random Forest ~91 % Середня (узагальнені важливості) HRV, SpO2, ДАТ, ЧСС
XGBoost ~93 % Середня (SHAP-аналіз покращує пояснення) HRV, SpO2, Індекс перфузії, АТ
Нейронна мережа (Attention) ~95 % Обмежена (attention виділяє релевантні ознаки) HRV, SpO2, PPG-фічі, PI

Примітки: HRV – варіабельність серцевого ритму. САТ – систолічний артеріальний тиск. ДАТ – діастолічний артеріальний тиск. PI – 
індекс перфузії. PPG-фічі – параметри фотоплетизмографічного сигналу.

Рис. 2. Важливість параметрів за SHAP-аналізом

Рис. 3. Важливість параметрів у моделі Random Forest

Висновки
У даній роботі розглянуто підхід до інтерпретованої класифікації гемодинамічного стану на основі аналізу 

ключових неінвазивних параметрів та оцінки важливості ознак. Проведене дослідження дозволяє зробити такі 
висновки:

1.	 Обґрунтовано вибір ключових показників – частота серцевих скорочень, варіабельність серцевого ритму, 
пульсовий тиск, фотоплетизмограма та рівень насичення крові киснем (SpO2) є найбільш інформативними для 
оцінки функціонального стану серцево-судинної системи.

2.	 Інтерпретовані моделі машинного навчання (логістична регресія, дерева рішень, ансамблеві методи із 
SHAP- або LIME-аналізом) показали високу ефективність при збереженні зрозумілості результатів для лікаря. Це 
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забезпечує не лише підвищення точності класифікації, а й прозорість у прийнятті рішень, що є критично важли-
вим у клінічній практиці.

3.	 Використання відкритих медичних баз даних (PhysioNet, MIMIC-III) підтвердило доцільність застосування 
інтегрованого підходу: поєднання класичних та новітніх неінвазивних параметрів дало змогу підвищити точність 
класифікації на 8–10 % у порівнянні з традиційними методами.

4.	 Створений прототип програмного модуля для збору, обробки та аналізу даних із сенсорних пристроїв 
підтвердив можливість практичного впровадження запропонованої методики. Система здатна функціонувати 
у режимі реального часу та забезпечувати лікаря не лише кінцевим результатом, а й поясненнями щодо його 
формування.

5.	 Перспективи подальших досліджень полягають у:
–	 розширенні кількості аналізованих параметрів (наприклад, варіабельність артеріального тиску, показники 

дихальної активності),
–	 інтеграції із клінічними інформаційними системами та телемедициною,
–	 використанні методів глибинного навчання у поєднанні з механізмами пояснюваності (Explainable AI, XAI),
–	 валідації системи на розширених клінічних вибірках.
Отримані результати свідчать про доцільність застосування інтерпретованих алгоритмів у задачах класифіка-

ції гемодинамічного стану, що сприятиме розвитку персоналізованої медицини, підвищенню якості діагностики 
та моніторингу пацієнтів у реальних умовах.
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