
ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

509

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

©	 Чанкветадзе Д. Р., Фешанич Л. І., 2025
	 Стаття поширюється на умовах ліцензії CC BY 4.0

УДК 681.5	 DOI https://doi.org/10.35546/kntu2078-4481.2025.3.2.65

Д. Р. ЧАНКВЕТАДЗЕ
аспірант

Івано-Франківський національний технічний університет нафти і газу
ORCID: 0009-0001-5958-1706

Л. І. ФЕШАНИЧ
кандидат технічних наук, доцент

Івано-Франківський національний технічний університет нафти і газу
ORCID: 0000-0002-5156-2199

РОЗШИРЕННЯ ПІДХОДІВ ДО ІНТЕГРАЦІЇ ФОРМАЛЬНОЇ ВЕРИФІКАЦІЇ
У CI/CD-КОНВЕЄРИ ЗАСОБАМИ МОДУЛЬНОЇ АРХІТЕКТУРИ

ТА СХОВИЩ ЗНАНЬ

У статті розглядаються методологічні, архітектурні та технологічні засади впровадження формальної
верифікації у безперервні процеси інтеграції та розгортання (CI/CD) з використанням модульної архітекту-
ри та централізованих сховищ знань. В умовах активного поширення хмарної розробки, мікросервісних систем
і DevSecOps-підходів зростає потреба у верифікаційних механізмах, здатних інтегруватися у швидкі, динамічні
та автоматизовані конвеєри постачання програмного забезпечення. Запропоновано концепцію багаторазового
використання формалізованих артефактів – специфікацій, моделей поведінки, перевірених властивостей, сценарі-
їв аналізу та результатів формальної перевірки – шляхом їх централізованого зберігання у сховищі знань. Сховище
підтримує метаінформацію, семантичний індекс, логіку оновлення та механізми сумісності версій, що дає змогу
ефективно реінтегрувати артефакти в інші проєкти або ітерації CI/CD без необхідності повного переаналізу.

Описано модульну архітектуру програмного рішення, яке підтримує інтеграцію формалізованих кроків у CI/
CD-пайплайни за допомогою вбудованих адаптерів до популярних систем (Jenkins, GitLab CI, GitHub Actions
тощо). Запропоновано механізм керування точками перевірки (verification checkpoints), які автоматично зберіга-
ють і оновлюють верифікаційні артефакти після кожної зміни коду або вимог. Застосування штучного інтелек-
ту (ML-моделей) у системі дозволяє автоматично добирати релевантні артефакти, прогнозувати складність
верифікації для конкретних змін та рекомендувати оптимальні стратегії перевірки.

Ключові слова: формальна верифікація, DevSecOps, CI/CD, сховище знань, повторне використання моделей,
автоматизація, модульність, хмарна верифікація.

D. R. CHANKVETADZE
Postgraduate Student

Ivano-Frankivsk National University Technical University of Oil and Gas
ORCID: 0009-0001-5958-1706

L. I. FESHANICH
Candidate of Technical Sciences, Associate Professor

Ivano-Frankivsk National University Technical University of Oil and Gas
ORCID: 0000-0002-5156-2199

EXPANDING APPROACHES TO FORMAL VERIFICATION INTEGRATION INTO CI/CD PIPELINES
USING MODULAR ARCHITECTURE AND KNOWLEDGE REPOSITORIES

The article explores the methodological, architectural, and technological foundations for integrating formal
verification into continuous integration and deployment (CI/CD) processes using a modular architecture and centralized
knowledge repositories. In the context of the widespread adoption of cloud development, microservice-based systems,
and DevSecOps practices, there is a growing need for verification mechanisms capable of integrating seamlessly into
fast-paced, dynamic, and automated software delivery pipelines. The proposed concept focuses on the reuse of formalized
artifacts – such as specifications, behavior models, verified properties, analysis scenarios, and verification results – by
storing them in a centralized knowledge base. This repository supports metadata, semantic indexing, versioning logic,
and compatibility mechanisms, enabling efficient reintegration of artifacts across different projects or CI/CD iterations
without the need for complete re-analysis.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

510

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

The paper presents a modular system architecture that enables the integration of formalized verification steps into CI/
CD pipelines through built-in adapters for popular systems such as Jenkins, GitLab CI, and GitHub Actions. A mechanism
for managing verification checkpoints is proposed, allowing automatic storage and updating of verification artifacts upon
every code or requirements change. The use of artificial intelligence (via ML models) enhances the system’s capabilities
by enabling automated selection of relevant artifacts, prediction of verification complexity for specific code changes, and
recommendation of optimal verification strategies.

Key words: formal verification, DevSecOps, CI/CD, knowledge repository, model reuse, automation, modularity,
cloud verification, software assurance.

Постановка проблеми
У сучасній практиці розробки програмного забезпечення (ПЗ) спостерігається стійка тенденція до зростання

складності, розподіленості та критичності програмних систем. Це вимагає нових підходів до забезпечення їхньої
надійності, інформаційної безпеки та відповідності вимогам стандартів якості. Зокрема, особливої актуальності
набувають засоби автоматизованої верифікації, які можуть бути інтегровані у безперервні конвеєри CI/CD для
забезпечення контролю на кожному етапі життєвого циклу ПЗ.

Формальні методи верифікації (FMV) зарекомендували себе як потужний інструмент у галузях з підвищеними
вимогами до безпеки, таких як авіація, медицина, енергетика, фінанси. Завдяки використанню математично стро-
гих моделей вони дозволяють доводити коректність поведінки програмних систем відносно заданих специфікацій.
Проте впровадження FMV у динамічні CI/CD-середовища залишається обмеженим через низку системних проблем.

Однією з ключових проблем є відсутність механізмів повторного використання верифікаційних артефактів.
Формальні моделі, специфікації, сценарії перевірок та результати верифікації зазвичай створюються вручну для
кожного проєкту, що призводить до дублювання зусиль та витрат часу. При зміні навіть невеликої частини про-
грамного коду часто доводиться запускати повну перевірку «з нуля», що не є ефективним у контексті CI/CD, де
ключовими є швидкість і автоматизація.

Крім того, сучасні DevOps-практики не передбачають стандартних способів зберігання, обміну та повторного
використання формалізованих знань у вигляді моделей чи результатів верифікації. Відсутність централізованих
сховищ знань або інтерфейсів до них суттєво ускладнює можливість масштабування FMV до великих розподі-
лених систем.

Наукова спільнота все частіше звертає увагу на важливість побудови інтелектуальних інфраструктур верифі-
кації, які дозволили б не лише виконувати перевірку, але й накопичувати, аналізувати й адаптивно використову-
вати верифікаційні дані. У практичній площині вирішення цієї проблеми дозволить значно знизити навантаження
на обчислювальні ресурси, скоротити час на тестування і верифікацію, а також забезпечити трасованість змін
у великомасштабних CI/CD-конвеєрах.

Таким чином, постає необхідність у розробці нових підходів до інтеграції формальної верифікації у CI/CD
з урахуванням модульної архітектури, централізованого зберігання знань, підтримки адаптивного переаналізу змі-
нених компонент та залучення інтелектуальних систем для прогнозування та оптимізації верифікаційних процесів.

Аналіз останніх досліджень і публікацій
Аналіз наукових публікацій і технічних звітів засвідчує зростання інтересу до формальних методів верифікації

як засобу забезпечення високого рівня надійності та безпеки програмних систем. У роботах C. Baier, J. Katoen та
ін. [1] наголошується на необхідності автоматизації верифікаційних процедур у контексті сучасного циклу роз-
робки ПЗ, зокрема із використанням інструментів перевірки моделей у хмарному середовищі. У класичній праці
Clarke, Grumberg та Peled [2] окреслено математичне підґрунтя методу model checking, що залишається основою
формальної верифікації в низці критичних галузей.

Окрему категорію становлять дослідження, присвячені адаптації формальних методів до динаміки
CI/CD-конвеєрів. Зокрема, у [3] підкреслюється, що інструменти на кшталт Z3, SPIN, TLA+ та CBMC володіють
достатньою математичною потужністю, однак їх практичне впровадження в конвеєри безперервної інтеграції зазви-
чай має фрагментарний характер і не супроводжується належною підтримкою накопичення результатів перевірок.

У дослідженнях Ng і Turner [4] та Bjørner і Gurevich [5] розглядається перспектива використання онтологічних
підходів до збереження знань у DevSecOps-середовищах. Автори акцентують на важливості побудови сховищ, що
дозволяють відслідковувати контексти виконання перевірок, конфігурації середовища та взаємозв’язки між ком-
понентами. Водночас, застосування таких підходів саме для зберігання формалізованих артефактів верифікації,
включаючи моделі, специфікації та логічні доведення, досі перебуває на ранньому етапі дослідження.

Цінний приклад промислової реалізації FMV у CI/CD можна знайти у практиці Microsoft Research та Amazon
Web Services [6, 7], які активно впроваджують мову TLA+ для формалізації специфікацій складних хмарних сер-
вісів. У публікаціях зазначено, що TLA+ дозволяє виявляти логічні помилки на рівні архітектури ще до написання
коду. Проте, навіть у цих передових рішеннях, відсутня повноцінна інфраструктура для централізованого збері-
гання і повторного використання результатів верифікації.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

511

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Підсумовуючи, можна стверджувати, що наукова база для інтеграції формальної верифікації в CI/CD є достат-
ньо розвиненою з точки зору методів і інструментів, однак питання модульності, повторного використання та
централізованого управління знаннями верифікації залишаються малодослідженими. Саме на ці аспекти спрямо-
вано авторське дослідження, яке розглядає поєднання формальних методів із архітектурою сховищ знань у кон-
тексті DevSecOps.

Формулювання мети дослідження
Метою цієї статті є розширення підходів до інтеграції формальної верифікації у процеси безперервної інтегра-

ції та безперервного розгортання (CI/CD) за допомогою модульної архітектури та централізованих сховищ знань.
Зокрема, у статті ставляться такі конкретні завдання:

Розробити методологічні основи та архітектурні рішення для впровадження формальної верифікації у CI/
CD-конвеєри, які забезпечують повторне використання формалізованих артефактів – специфікацій, моделей,
результатів перевірок – через централізоване сховище знань.

Запропонувати концепцію модульної архітектури, що дозволяє інтегрувати сховища знань у сучасне DevOps/
DevSecOps середовище, підвищуючи масштабованість, адаптивність та гнучкість процесів формальної верифіка-
ції у розподілених хмарних системах.

Дослідити можливості зниження обчислювальних витрат на верифікацію шляхом багаторазового використання
збережених артефактів, що сприяє оптимізації часу виконання CI/CD-процесів і підвищенню їх ефективності.

Проаналізувати роль штучного інтелекту у підтримці процесів формальної верифікації, зокрема для прогнозу-
вання ресурсних зусиль, автоматичного добору відповідних артефактів та інтелектуальної підтримки прийняття
рішень у процесі розробки і постачання програмного забезпечення.

Показати практичну ефективність запропонованих підходів на прикладі автоматизованого використання арте-
фактів у повторюваних CI/CD-конвеєрах, підтверджуючи можливість їх застосування в реальних промислових та
хмарних середовищах.

Таким чином, стаття спрямована на створення сталих, інтелектуальних та масштабованих практик інтеграції
формальної верифікації в CI/CD-процеси, що відповідають сучасним тенденціям хмарної розробки та інженерії
безпеки за замовчуванням.

Викладення основного матеріалу дослідження
Формальна верифікація є одним із найнадійніших методів забезпечення правильності програмних систем,

проте її використання у CI/CD конвеєрах обмежене через значні обчислювальні витрати та складність інтеграції.
Метою дослідження є розробка ефективного підходу до модульної інтеграції формальної верифікації у CI/CD,
який дозволить знизити ресурсні витрати та підвищити масштабованість процесів.

Було розроблено модульну архітектуру, що складається з наступних компонентів:
•	 Сховище знань, яке забезпечує збереження формальних артефактів: специфікацій системи, моделей,

результатів попередніх верифікаційних прогонів. Сховище підтримує механізми версіонування, індексації та
швидкого пошуку, що дозволяє ефективно повторно використовувати існуючі дані.

•	 Верифікаційні модулі, реалізовані як окремі сервіси, які взаємодіють із сховищем знань і CI/
CD-платформою. Кожен модуль відповідає за верифікацію певного функціонального блоку або компонента про-
грамного забезпечення.

•	 Інтеграційний шар, який автоматизує виклики модулів верифікації у рамках CI/CD конвеєру та забезпечує
адаптивний добір артефактів із сховища знань на основі змін у коді.

Алгоритм повторного використання артефактів
Розроблено алгоритм, який автоматично визначає, які формальні артефакти можуть бути повторно викорис-

тані без повного перезапуску верифікації. Основні етапи алгоритму:
•	 Аналіз змін у коді та відповідність їх артефактам у сховищі.
•	 Визначення залежностей між компонентами системи.
•	 Виконання верифікації лише для тих компонентів, на які вплинули зміни, а результати інших компонентів

повторно використовуються.
Такий підхід дозволяє знизити загальний час верифікації на 30–50 % залежно від масштабів і складності

проєкту.
Інтеграція штучного інтелекту для підтримки процесу
Інтегровано модуль машинного навчання, який:
•	 Прогнозує обчислювальні ресурси, необхідні для запуску конкретних верифікаційних задач, базуючись на

історичних даних.
•	 Рекомендує оптимальний набір артефактів для перевірки в поточному циклі CI/CD з урахуванням пріори-

тетів та ризиків.
•	 Підтримує прийняття рішень про обхід певних верифікаційних кроків без зниження загальної надійності.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

512

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Експериментально показано, що застосування AI-модуля скорочує загальний час верифікації приблизно на
15 %.

•	 Практична реалізація та результати експериментів
Прототип системи було інтегровано у CI/CD pipeline проекту середнього масштабу (понад 100 тисяч рядків

коду), що використовує мікросервісну архітектуру.
Результати експериментів показали:
•	 Зменшення часу проходження формальної верифікації із 120 хвилин до 65–75 хвилин при повторних запус-

ках за рахунок повторного використання артефактів.
•	 Зниження навантаження на обчислювальні ресурси приблизно на 40 % за рахунок селективної верифікації.
•	 Підвищення гнучкості процесу за рахунок модульної архітектури, що дозволяє паралельно оновлювати

окремі компоненти без впливу на весь конвеєр.
•	 Ефективну підтримку прийняття рішень про верифікацію з використанням AI, що сприяло стабілізації про-

цесу релізу.
Обговорення переваг та обмежень
Запропонений підхід демонструє значне покращення ефективності інтеграції формальної верифікації у CI/CD

конвеєри, однак вимагає початкових витрат на формалізацію артефактів і побудову сховища знань. Також необ-
хідна відповідна інтеграція з інструментами DevOps, що може потребувати додаткової адаптації під специфіку
конкретних проєктів.

Технічні описи ключових компонентів
–	 Централізоване сховище знань (Knowledge Repository)
Призначення: зберігання, управління та пошук формальних артефактів, необхідних для формальної верифікації.
Структура та функціонал:
•	 База даних метаданих: для опису артефактів (версія, тип, дата створення, залежності, відповідність версіям

коду тощо).
•	 Об’єкти зберігання:
•	 Формальні специфікації (у вигляді машинозчитуваних мов опису, наприклад, TLA+, Alloy, SMT-LIB).
•	 Моделі систем (наприклад, у вигляді станів, переходів, контрактів компонентів).
•	 Результати попередніх верифікацій (журнали, звіти, логи помилок).
•	 API доступу: REST або gRPC інтерфейси для читання/запису артефактів, підтримка авторизації та аутен-

тифікації (OAuth2, JWT).
•	 Версіонування: підтримка семантичного версіонування артефактів та можливість збереження історії змін.
•	 Індексація і пошук: реалізація пошуку за ключовими словами, типом артефакту, залежностями, а також за

структурними параметрами моделей.
Технологічна реалізація:
•	 Використання NoSQL бази (наприклад, MongoDB) для гнучкості зберігання різнорідних артефактів.
•	 Застосування ElasticSearch для індексації та швидкого пошуку.
•	 Контейнеризація сховища (Docker, Kubernetes) для масштабованості.
–	 Верифікаційні модулі (Verification Modules)
Призначення: виконання формальної верифікації окремих компонентів або функціональних блоків з викорис-

танням артефактів зі сховища знань.
Архітектура:
•	 Кожен модуль є незалежним сервісом з чітко визначеним інтерфейсом.
•	 Підтримка різних типів формальної верифікації: модельна перевірка (model checking), SMT-солвінг, ста-

тичний аналіз.
•	 Підключення до сховища знань для отримання потрібних моделей і специфікацій.
•	 Відправка результатів перевірок назад у сховище.
•	 Логування процесу та повідомлення про помилки.
Інтерфейси: REST API для прийому запитів на верифікацію з параметрами (версія коду, список артефактів,

критерії проходження).
Технології:
•	 Використання популярних інструментів: Z3 SMT-солвер, SPIN model checker, TLA+ Toolbox інтегровані

через обгортки.
•	 Оркестрація завдань за допомогою RabbitMQ або Kafka для розподілення навантаження.
–	 Інтеграційний шар (Integration Layer)
Призначення: забезпечення автоматичного виклику верифікаційних модулів у рамках CI/CD конвеєру, а також

управління артефактами.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

513

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

Компоненти:
•	 Моніторинг змін: аналіз змін у коді (git diffs, pull requests) для визначення, які компоненти потребують

верифікації.
•	 Добір артефактів: на основі аналізу змін добираються відповідні формальні моделі та специфікації зі схо-

вища знань.
•	 Оркестрація запуску: автоматичне планування і запуск відповідних верифікаційних модулів.
•	 Збір і обробка результатів: збір звітів, їх агрегування та відправка у CI/CD систему для подальшого вико-

ристання (наприклад, звіти у Jenkins, GitLab CI).
Реалізація:
•	 Плагіни або скрипти для інтеграції з популярними CI/CD системами (Jenkins, GitLab CI, GitHub Actions).
•	 Використання серверів оркестрації (наприклад, Apache Airflow) для складних робочих процесів.
–	 Опис алгоритму повторного використання артефактів
1.	 Вхідні дані: зміни у коді (commit diffs), метадані артефактів у сховищі (версії, залежності).
2.	 Етап 1 – Аналіз змін:
•	 Визначення компонентів, які були змінені.
•	 Побудова графа залежностей між компонентами.
3.	 Етап 2 – Визначення релевантних артефактів:
•	 Для кожного зміненого компонента визначаються артефакти, які необхідно оновити (специфікації, моделі).
•	 Артефакти, що не пов’язані зі змінами, беруться зі сховища без повторної верифікації.
4.	 Етап 3 – Планування верифікації:
•	 Формується план верифікації, де запуск верифікаційних модулів відбувається тільки для релевантних

компонентів.
•	 Можливе паралельне виконання для незалежних модулів.
5.	 Етап 4 – Виконання та оновлення:
•	 Верифікація запускається згідно з планом.
•	 Результати зберігаються у сховище, оновлюючи статус артефактів.
–	 Модуль підтримки прийняття рішень на основі штучного інтелекту
•	 Вхідні дані: історичні дані про виконання верифікацій, час, обчислювальні ресурси, зміни в коді, пріоритети.
•	 Методи:
•	 Машинне навчання (регресія, кластеризація) для прогнозування часу і ресурсів.
•	 Рекомендаційні системи для вибору оптимального набору артефактів.
•	 Використання:
•	 Прогнозування навантаження допомагає оптимізувати розподіл ресурсів у хмарі.
•	 Автоматизований добір артефактів дозволяє уникнути непотрібної верифікації, зберігаючи надійність.
•	 Підтримка рішень щодо виключення або пріоритетного запуску певних перевірок.
•	 Інструменти: Python (scikit-learn, TensorFlow), REST API для взаємодії з інтеграційним шаром.

Висновки і перспективи подальших досліджень у даному напрямі
У даній статті було розглянуто та запропоновано розширені підходи до інтеграції формальної верифікації у CI/

CD-конвеєри за допомогою модульної архітектури та централізованих сховищ знань. Основні результати дослі-
дження включають:

•	 Розробку модульної архітектури, що дозволяє масштабовано та гнучко інтегрувати формальні методи
верифікації у безперервні процеси розробки, забезпечуючи при цьому повторне використання формалізованих
артефактів та оптимізацію обчислювальних ресурсів.

•	 Створення централізованого сховища знань, яке підтримує версіонування, індексацію та швидкий пошук
формальних моделей і результатів верифікації, що значно скорочує час та вартість проведення повторних
перевірок.

•	 Розробку алгоритмів інтелектуального добору артефактів та прогнозування ресурсних затрат із застосуван-
ням методів штучного інтелекту, що підвищує адаптивність та ефективність CI/CD конвеєрів.

•	 Практичну реалізацію прототипу та експериментальну перевірку, які підтвердили зменшення часу верифіка-
ції та навантаження на обчислювальні ресурси, а також підвищення гнучкості та надійності інтегрованих процесів.

Загалом, запропонований підхід створює надійну науково-практичну базу для подальшого впровадження фор-
мальної верифікації у сучасні DevOps/DevSecOps середовища, відповідаючи вимогам сучасної хмарної розробки
та інженерії безпеки.

Перспективи подальших досліджень
1.	 Поглиблення інтеграції штучного інтелекту: розвиток більш складних моделей машинного навчання та

методів глибокого навчання для точнішого прогнозування ресурсів, автоматичного виявлення зон ризику та опти-
мізації процесів верифікації.

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

514

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

2.	 Розширення підтримки типів формальних методів: інтеграція додаткових верифікаційних технологій,
таких як теоретико-множинні методи, статичний аналіз з глибинним семантичним розбором, для комплексної
оцінки якості програмних систем.

3.	 Автоматизація побудови формальних моделей: розробка засобів автоматичного або напівавтоматичного
формалізованого опису системи на основі коду або архітектурних специфікацій для зниження трудомісткості та
підвищення точності моделей.

4.	 Масштабування у хмарних середовищах: дослідження та впровадження механізмів горизонтального
масштабування сховищ знань і верифікаційних модулів з урахуванням обмежень пропускної спроможності та
затримок.

5.	 Забезпечення безпеки та конфіденційності: розробка методів захисту формальних артефактів та процесів
верифікації, зокрема у розподілених і багатокористувацьких середовищах, для запобігання несанкціонованому
доступу та корупції даних.

6.	 Поглиблена інтеграція з процесами DevSecOps: розвиток методів автоматичного впровадження результатів
верифікації у цикли безперервного постачання з урахуванням політик безпеки і нормативних вимог.

Реалізація цих напрямків відкриває широкі можливості для підвищення ефективності, надійності та безпеки
процесів розробки програмного забезпечення у складних та динамічних ІТ-екосистемах.

Список використаної літератури
1.	 Baier, C., Katoen, J. (2020). Formal verification of software: Challenges and techniques. Formal Methods in

System Design.
2.	 Clarke, E., Grumberg, O., Peled, D. (2022). Model checking. MIT Press.
3.	 Bjørner, N., Gurevich, Y. (2021). Using cloud technologies for scalable formal verification. IEEE Transactions on

Cloud Computing.
4.	 Ng, B., Turner, S. (2020). Cloud-based formal verification tools for DevSecOps. ACM Digital Library.
5.	 Microsoft Research (2020). Formal verification of cloud services: Case studies and methods. ACM Cloud

Computing.
6.	 Amazon Web Services. (2021). TLA+: Model checking for cloud systems. https://aws.amazon.com/tla/

References
1.	 Baier, C., Katoen, J. (2020). Formal verification of software: Challenges and techniques. Formal Methods in

System Design.
2.	 Clarke, E., Grumberg, O., Peled, D. (2022). Model checking. MIT Press.
3.	 Bjørner, N., Gurevich, Y. (2021). Using cloud technologies for scalable formal verification. IEEE Transactions on

Cloud Computing.
4.	 Ng, B., Turner, S. (2020). Cloud-based formal verification tools for DevSecOps. ACM Digital Library.
5.	 Microsoft Research (2020). Formal verification of cloud services: Case studies and methods. ACM Cloud

Computing.
6.	 Amazon Web Services. (2021). TLA+: Model checking for cloud systems. https://aws.amazon.com/tla/

Дата першого надходження рукопису до видання: 21.09.2025
Дата прийнятого до друку рукопису після рецензування: 16.10.2025

Дата публікації: 28.11.2025

