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МОДЕЛЮВАННЯ ПРИЙНЯТТЯ РІШЕНЬ З УПРАВЛІННЯ РЕСУРСАМИ 
МІКРОСЕРВІСІВ ТА ВИБОРУ ВІРТУАЛЬНИХ МАШИН 

У СЕРЕДОВИЩІ KUBERNETES

Сучасні хмарні системи, побудовані з використанням мікросервісних архітектур, стикаються з критичною 
проблемою ефективного управління ресурсами в умовах динамічного навантаження. Стандартні реактивні 
механізми оркестратора Kubernetes, такі як Horizontal Pod Autoscaler, часто виявляються недостатніми через 
затримки у реакції, відсутність врахування майбутніх трендів навантаження та інерційність процесів запус-
ку нових реплік мікросервісів і віртуальних машин. Це призводить до неефективного використання ресурсів, 
коливань продуктивності (flapping) та зайвих операційних витрат. У відповідь на ці виклики в статті запропо-
новано комплексну математичну модель для оптимального проактивного управління ресурсами на основі про-
гнозування навантаження, динамічне масштабування мікросервісів із врахуванням затримок та оптимальне 
розміщення подів на віртуальних машинах.

Метою даної роботи є розробка математичної оптимізаційної моделі для автоматичного управління ресур-
сами мікросервісів та динамічного вибору віртуальних машин. Формалізовано предметну область шляхом визна-
чення ключових множин: класів віртуальних машин, активних екземплярів віртуальних машин, типів мікросер-
вісів та їхніх реплік (подів). На основі історичних даних метрик CPU та оперативної пам’яті виконується 
прогнозування навантаження на горизонті планування і для кожного типу мікросервіса розраховується бажана 
кількість реплік, необхідна для обробки очікуваного навантаження. Сформовано та формалізовано цільову функ-
цію і обмеження задачі оптимального управління ресурсами мікросервісів та вибору віртуальних машин, спира-
ючись на сукупність прийнятих припущень.

Запропонований підхід забезпечує підвищення відмовостійкості та продуктивності мікросервісних додатків 
при одночасному зниженні операційних витрат за рахунок усунення надмірного резервування та консолідації 
навантаження на найбільш економічно ефективних типах віртуальних машин. Результати роботи становлять 
теоретичну основу для подальших досліджень та практичної реалізації системи інтелектуального оркестру-
вання для Kubernetes.

Ключові слова: мікросервіси, Kubernetes, управління ресурсами, прогнозування навантаження, автомасшта-
бування, оптимізація, віртуальні машини, інформаційні технології, інформаційні системи.
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MODELING DECISION-MAKING FOR MICROSERVICE RESOURCE MANAGEMENT 
AND VIRTUAL MACHINE SELECTION IN A KUBERNETES ENVIRONMENT

Modern cloud systems built on microservice architectures face a critical challenge of efficient resource management 
under dynamic workloads. Standard reactive mechanisms of the Kubernetes orchestrator, such as the Horizontal Pod 
Autoscaler, often prove insufficient due to delayed responses, lack of consideration for future load trends, and the inertia 
of launching new microservice replicas and virtual machines. This results in inefficient resource utilization, performance 
fluctuations (flapping), and excessive operational costs.

In response to these challenges, the paper proposes a comprehensive mathematical model for optimal proactive 
resource management based on load forecasting, dynamic scaling of microservices with consideration of delays, and 
optimal pod placement on virtual machines.

The aim of this work is to develop a mathematical optimization model for automated microservice resource 
management and dynamic virtual machine selection. The subject domain is formalized through the definition of key 
sets: classes of virtual machines, active instances of virtual machines, types of microservices, and their replicas (pods). 
Based on historical CPU and memory metrics, load forecasting is performed on the planning horizon, and for each 
type of microservice, the desired number of replicas required to handle the expected load is calculated. The objective 
function and constraints of the problem of optimal resource management and virtual machine selection are constructed 
and formalized, relying on a set of accepted assumptions.

The proposed approach increases the resilience and performance of microservice applications while simultaneously 
reducing operational costs by eliminating excessive overprovisioning and consolidating workloads on the most cost-
effective types of virtual machines. The results provide a theoretical foundation for further research and practical 
implementation of an intelligent orchestration system for Kubernetes.

Key words: microservices, Kubernetes, resource management, load forecasting, autoscaling, optimization, virtual 
machines, information technology, information systems.

Постановка проблеми
Однією з ключових задач сучасної IT-інфраструктури є забезпечення ефективного та відмовостійкого функціону-

вання мікросервісних систем у хмарних середовищах за умов динамічно змінного навантаження. У разі різких змін 
навантаження, інформаційна система має швидко масштабуватись, щоб уникнути втрати продуктивності або від-
мови в обслуговуванні, але водночас небажано, аби це призводило до надмірних витрат на обчислювальні ресурси.

Ця проблема ускладнюється тим, що сучасні оркестратори, такі як Kubernetes, часто використовують реак-
тивні механізми масштабування (наприклад, Horizontal Pod Autoscaler), які приймають рішення на основі мину-
лих чи поточних даних, не враховуючи майбутніх трендів навантаження та інерційності самої системи. Запуск 
нових реплік мікросервісів та віртуальних машин потребує часу, що призводить до затримок у реакції на наван-
таження та неефективного використання ресурсів.

Крім того, вимоги до економічної ефективності та надійності сервісів обмежують можливості використання 
простих рішень, таких як надлишкове резервування ресурсів. Це обумовлює актуальність пошуку інтелектуаль-
них та проактивних підходів до управління ресурсами. Вирішення цієї задачі є критично важливим для підви-
щення ефективності, надійності та зниження вартості експлуатації мікросервісних архітектур.

Аналіз останніх досліджень і публікацій
Стандартний підхід Kubernetes до управління ресурсами мікросервісів базується на Horizontal Pod Autoscaler 

(HPA), який використовує прості метрики (CPU, memory) і порогові значення для прийняття рішень про масш-
табування [1]. Проте цей підхід має суттєві недоліки. По-перше, HPA реагує на зміни лише після їх виникнення, 
що призводить до затримок у реакції [2]. По-друге, система не враховує час запуску нових реплік, що може 
спричиняти тимчасове зниження продуктивності. Крім того, HPA схильний до такого явища як flapping – частого 
додавання та видалення подів через чутливість до коротких сплесків навантаження.

Для подолання обмежень зазначеного вище реактивного підходу було запропоновано використовувати методи 
прогнозуючого масштабування, що використовують машинне навчання для передбачення майбутнього наван-
таження [3,4]. Також при порівнянні ARIMA, Prophet та LSTM-мереж виявилося, що найбільш вдалим є вибір 
на користь ARIMA [5]. Але незважаючи на переваги, дослідження зосереджуються лише на розрахунку бажаної 
кількості реплік, не розглядаючи питання їхнього розміщення на віртуальних машинах, що створює розрив між 
прогнозуванням потреб та реальним забезпеченням ресурсів.

Окрім цього, інше дослідження [6] визнає необхідність врахування інерційності системи автомасштабування. 
У роботі було розроблено алгоритм DACS (Delay-Aware Container Scheduling), який покликаний враховувати 
затримки обробки та мережі під час запуску подів, хоча і не розглядає час, якого потребує под при старті.

Вбудовані механізми розміщення подів у Kubernetes реалізуються через kube-scheduler та плагін 
NodeResourcesFit. Система підтримує різні стратегії розподілу ресурсів: LeastAllocated (за замовчуванням) прагне 
рівномірно розподілити навантаження між вузлами, тоді як MostAllocated та RequestedToCapacityRatio реалізу-
ють власну стратегію bin packing для максимізації утилізації [7].
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У той же час було продемонстровано, що інтегровані підходи для розподілення подів можуть досягати до 58 % 
зменшення витрат порівняно зі стандартним методом [8]. Даний підхід поєднує best-fit bin packing для початко-
вого розміщення, динамічне перепланування для консолідації робочих навантажень та автомасштабування для 
адаптації до змін попиту.

У контексті математичного моделювання управління ресурсами в Kubernetes можна відзначити дослідження, 
яке запропонувало динамічну модель, що враховує часові параметри та низькорівневі обмеження оптимізації 
[9]. Модель спрямована на регулювання не лише призначенням подів до віртуальних машин, але й керуванням 
увімкненням та вимкненням машин з метою мінімізації середньої кількості працюючих машин та максимізації 
коефіцієнта утилізації ресурсів.

Прогнозування навантаження також розглядалось у дослідженні [10] для динамічного вибору і міграції вір-
туальних машин у хмарних середовищах. Хоча при прогнозуванні використовувались агреговані метрики утилі-
зації, що не дозволяє використовувати цей підхід при необхідності більш гнучких налаштувань, які можуть бути 
надзвичайно важливими у контексті мікросервісної архітектури.

Таким чином, актуальною є розробка комплексної моделі, яка б поєднувала прогнозування навантаження, 
динамічне масштабування мікросервісів з урахуванням затримок, оптимальне розміщення на віртуальних маши-
нах та динамічне керування життєвим циклом цих машин для мінімізації сумарних витрат.

Формулювання мети дослідження
Метою даної роботи є розробка математичної оптимізаційної моделі для автоматичного управління ресурсами 

мікросервісів та динамічного вибору віртуальних машин. Розроблена модель має дозволити перейти від стан-
дартного реактивного масштабування до проактивного, що забезпечить кращу продуктивність мікросервісної 
системи при динамічному навантаженні. Особливу увагу слід приділити вирішенню задачі пакування, оскільки 
це призведе до зниження операційних витрат завдяки більш ефективному замовленню віртуальних машин та 
використанню їхніх ресурсів.

Для досягнення поставленої мети необхідно вирішити задачі:
–	 описати основні характеристики предметної області з використанням математичного апарату теорії 

множин;
–	 сформувати та формалізувати цільову функцію та обмеження задачі оптимального управління ресурсами 

мікросервісів і вибору віртуальних машин, спираючись на сукупність прийнятих припущень.
Викладення основного матеріалу дослідження

Формалізація характеристик предметної області включає формування переліку основних об’єктів предметної 
області та представлення їх характеристик з використанням теорії множин.

Основними об’єктами предметної області в задачі управління ресурсами мікросервісів та вибору віртуальних 
машин визначено:

–	 віртуальні машини, які відносяться до певного типу, що клауд провайдер надає в оренду з певними обчис-
лювальними ресурсами у вигляді CPU та пам’яті;

–	 міскросервіси (поди), які належать до певного типу мікросервісів та розміщені на деякій активній вірту-
альній машині.

Враховуючи, що зазначені об’єкти розглядаються в нестаціонарних умовах, під час формалізації їх характерис-
тик будемо використовувати дискретну рівномірно розподілену з кроком Dt  сітку часу T = {t0, t1, …, tN |ti = i ⋅ Dt} де 
t0 початковою точкою. Далі наведена формалізація характеристик зазначених об’єктів.

Під час запуску віртуальної машини розробник чи адміністратор повинен обрати певний тип віртуальної 
машини з поміж списку, який пропонується клауд провайдером. Різні типи розрізняються між собою як ресурс-
ними характеристиками, так і вартістю використання. Відповідно, формується множина класів віртуальних 
машин cj ∈ C де j номер класу. Кожен тип віртуальної машини cj характеризується кортежем (cpuj, memj, costj) де 
cpuj – кількість віртуальних CPU (vCPU); memj – об’єм оперативної пам’яті; costj – вартість використання однієї 
віртуальної машини типу cj за один крок Dt. Активні протягом часу спостереження віртуальні машини формують 
множину V, кожен елемент якої описується кортежем ( , , ).start stop

j k kc t t  Кожен екземпляр vk наслідує всі ресурсні 
характеристики і вартість свого класу cj ∈ C, а також має моменти запуску і зупинки відповідно – .,start stop

k kt t
Зазначені множини дозволяють обчислювальні ресурси, які клієнт отримує від клауд-провайдера для запуску 
мікросервісів.

Мікросервісна архітектура дозволяє краще справлятися з динамічним навантаженням при використанні 
додатків: якщо навантаження зростає лише на певний мікросервіс, то можна збільшити кількість реплік (подів) 
лише конкретного мікросервіса, а не горизонтально масштабувати великий моноліт. Завдяки такому більш точ-
ному масштабуванні можна скоротити операційні витрати. Нехай S – множина всіх типів мікросервісів, кожен 
елемент якої характеризується кортежем min max( , , , , , ),start stop

l l k k l lcpu mem t t n n  де cpul, meml – ресурси, необхідні для 
однієї репліки даного типу; ,start stop

k kt t  – час запуску та зупинки репліки; min max,l ln n  – мінімальна та максимальна 



ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

529

                   ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

кількість реплік, що мають бути активними протягом усього часу. Позначимо nl,i як кількість реплік мікросервісу 
sl – момент часу ti, яка у будь-який момент часу має задовольняти умові min max

, .l l i ln n n≤ ≤  Запущені в роботу за 
весь час спостереження репліки (поди) мікросервісів формують множину P, кожен елемент якої характеризується 
кортежем ( , , , ),start stop

k l p pv s t t  де vk – конкретна віртуальна машина, на якій розміщений под; sl – клас мікросервіса, до 
якого належить под; ,start stop

p pt t  – моменти запуску та зупинки пода. Кожен под pp наслідує всі характеристики свого 
типу sl. Зазначимо, що розміщення пода на активній віртуальній машині означає використання відповідних ресур-
сів даної віртуальної машини. Окрім цього, слід зазначити, що у процесі роботи репліки мікросервісів можуть 
переміщуватися між активними віртуальними машинами: под зупиняється на одній машині та запускається на 
іншій. Тому для спостереженням даного явища міграції введемо бінарну змінну xp,k,i ∈ {0, 1}, яка характеризує, чи 
розміщений под pp на віртуальній машині vk у момент часу ti. Дані множини дозволяють поєднати наявні ресурси, 
придбані у вигляді віртуальних машин та їхніх обчислювальних ресурсів, та власне використання цих ресурсів 
компонентами інфраструктури додатків.

Розглянемо використання ресурсів детальніше: кожен под pp кожен момент часу використовує певний обсяг 
ресурсів CPU та оперативної пам’яті. Відповідно, введемо множину метрик подів PM = {(cpup,i, memp,i) | p ∈ P, 
ti ∈ T}, до якої входять спостереження кількості спожитих ресурсів кожною з реплік мікросервісів. Оскільки для 
прийняття рішень про масштабування використовуються агреговані по мікросервісам метрики, введемо також 
і множину метрик мікросервісів SM = {(cpul,i, meml,i) | sl ∈ S, ti ∈ T}, де 
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l i p i
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∈ =
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mem mem
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= ∑
Дані множини дозволяють спостерігати за поточним навантаженням у вигляді обсягу спожитих ресурсів.

Для вирішення задачі оптимального управління ресурсами мікросервісів та вибору віртуальних машин, необ-
хідно на основі формалізованих множин об’єктів предметної області та їх характеристик розробити її матема-
тичну постановку.

Формальна постановка задачі містить обмеження та цільову функцію задачі оптимального управління ресур-
сами мікросервісів і вибору віртуальних машин, сформованих на основі набору припущень.

Зазначена задача оптимального управління формується на основі прогнозування навантаження по викорис-
танню мікросервісів на деякому горизонті прогнозування ti = {ti + 1, ti + 2, …, ti + H} ⊂ T, де H – глибина горизонту. На 
основі історичних даних метрик SM формується така функція f, що  , :i lt T s S∀ ∈ ∀ ∈

	    
, 1 , 2 , , , 1 ,0( ) ( , , , ) ( , , , ),l l i l i l i H l i l i lSM SM SM SM f SM SM SM+ + + -τ = =… … 	 (1)

де SMl,i – значення метрик для мікросервісу sl момент ti;  , 1l iSM +  – прогноз майбутнього значення для мікросер-
вісу sl момент ti + 1.

Далі визначається кількість реплік мікросервісів, яка необхідна для обробки прогнозованого навантаження на 
горизонті t, використовуючи значення прогнозу  ( ):lSM τ

	  ( ) ( )
   

, 1, 1 , ,* max , , ,max , ,l il i l i H l i H
l l l l

l l l l l l l l

cpu cpumem mem
SM n

cpu mem cpu mem
++ + +

        τ τ = ⋅σ … ⋅σ    α ⋅ α ⋅ α ⋅ α ⋅     
 	 (2)

де al ∈ [0, 1] – коефіцієнт утилізації, який визначає цільовий рівень використання ресурсів однієї репліки мікро-
сервіса sl; sl ≥ 1 – коефіцієнт запасу на помилку прогнозування.

Даний розрахунок забезпечує, що кількість реплік буде достатньою для обробки прогнозованого наванта-
ження по обом метрикам, коефіцієнт a дозволяє управління ефективністю використання ресурсів, а коефіцієнт s 
дозволяє справлятися з неточністю прогнозу.

Фактична кількість реплік nl(t) змінюється з затримкою відносно бажаної кількості *( )ln τ  через затримки 
запуску подів, тому для урахування цього явища використаємо наступне рівняння:

	  , , 1 , ,
: ,start start

l l
i l i l i l i d l i d

t n n a a+ -
- - -

∀ ∈ τ = + -  	 (3)

де nl,i – фактична кількість реплік мікросервісу sl у момент ti; ,
start stop

start stopl l
l l

t t
d d

t t
= =

Δ Δ
 – затримки запуску/зупинки 

в кроках, викликані часом запуску/зупинки однієї репліки;   
, ,

таstart stop
l ll i d l i d

a a+ -
- -  – кількість реплік мікросервіса типу si, 

рішення про запуск/зупинку яких було прийнято start stop
l ld d  кроків назад.

Аналогічно враховуються затримки під час запуску чи зупинки віртуальних машин:

	  , , 1 , ,
: ,start stopi j i j i j i d j i d

t y y u u+ -
- - -

∀ ∈ τ = + -  	 (4)
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де yj,i – фактична кількість активних віртуальних машин cj у момент ti; ,
start stop

start stopt t
d d

t t
= =

Δ Δ
 – затримки запуску/

зупинки в кроках, викликані часом запуску/зупинки віртуальної машини;  
, ,

та start stopl i d l i d
u u+ -

- -  –	 кількість віртуаль-
них машин типу cj, рішення про запуск/зупинку яких було прийнято dstart/dstop кроків назад.

Обмеження рішень про зупинку реплік мікросервісів формулюється як:

	   , , ., :i l l i l it T s S a n-∀ ∈ ∀ ∈ ≤ 	 (5)

Схожим чином формулюється обмеження рішень про зупинку віртуальних машин:

	   , , ., :i j j i j it T c C u y-∀ ∈ ∀ ∈ ≤ 	 (6)

аланс розміщення подів має гарантувати, що їхнє розміщення збігається з загальною кількістю реплік 
мікросервісів:
	  , , ,, .:i l p k i l i

j

t T s S x n∀ ∈ ∀ ∈ =∑ 	 (7)

Ресурсні обмеження покликані гарантувати, що система не використовує більше обчислювальних ресурсів, 
ніж насправді існує:

	   , , ,, , :i l j l j i l j i j
l

t T s S c C n cpu y cpu∀ ∈ ∀ ∈ ∀ ∈ ⋅ ≤ ⋅∑ . 	 (8)

	 , , ,, , : .i l j l j i l j i j
j

t T s S c C n mem y mem∀ ∈ ∀ ∈ ∀ ∈ ⋅ ≤ ⋅∑ 	 (9)

Обмеження покриття попиту для задачі пакування часто формулюється через м’яке обмеження для того, аби 
залишити задачу розв’язною, тож обмеження можна сформулювати наступним чином:

	   *
, , , ,, : ,i l l i l i l i l it T s S n n e e- +∀ ∈ ∀ ∈ = - +  	 (10)

де ,l ie-  кількість невистачаючих реплік мікросервіса типу sl у момент ti; ,l ie-  кількість надлишкових реплік мікро-
сервіса типу sl у момент ti.

Основні характеристики об’єктів мають бути невід’ємними:

	   , , , , , , 0., , , , : , , , ,i l j p k l i j i p k i l i j it T s S c C p P v V n y x a u Z± ±∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∈ 	 (11)

Тепер, коли обмеження моделі було формалізовано, можемо перейти до опису цільової функції, яка має змен-
шити витрати на оренду віртуальних машин та врахувати негативні наслідки, описані в концептуальній моделі, 
у вигляді штрафів. Отже, цільова функція, що складається з сумарних витрат на оренду віртуальних машин 
протягом усього часу спостереження, штрафів за запуск/зупинку нових віртуальних машин задачі, штрафів за 
запуск/зупинку нових реплік мікросервісів та штрафів за переміщення подів між віртуальними машинами, має 
наступний вид:

	 ( ) ( ), , , , , , , , , 1
, , , , ,

min cos .j j i j i j i l i l i p k i p k i
i j i j i l p k i

t y u u e e x x+ + - - + + - -
-

 ⋅ + λ + λ + ω + ω + +j - 
 
∑ ∑ ∑ ∑ 	 (12)

Обмеження (3)–(11) та цільова функція (12) сформовані на основі припущень:
–	 всі часові параметри системи, такі як час запуску чи зупинки репліки мікросервіса або віртуальної машини, 

є цілими та кратними Dt;
–	 для всіх типів віртуальних машин час запуску і зупинки є однаковим;
–	 вартість використання віртуальної машини певного типу є сталою для всіх класів протягом усього періоду 

спостереження;
–	 під час розрахунку кількості поточних реплік мікросервіса, здатних обробляти навантаження, врахову-

ються лише ті репліки, рішення про зупинку яких ще не було прийнято;
–	 під час розрахунку кількості активних віртуальних машин, на яких можуть бути розміщені поди, врахову-

ються лише ті віртуальні машини, рішення про зупинку яких ще не було прийнято.
Висновки

Таким чином, в роботі запропоновано підхід до моделювання прийняття рішень по управлінню ресурсами 
мікросервісів у середовищі Kubernetes та динамічному вибору віртуальних машин, який базується на прогнозу-
ванні навантаження, динамічному моделюванні та bin packing. Виконано формалізацію основних характеристик 
предметної області з використанням математичного апарату теорії множин, та розроблено формальну постановку 
задачі оптимального управління ресурсами мікросервісів і вибору віртуальних машин.

Запропонована модель дозволяє прогнозувати майбутнє навантаження на систему, визначати необхідні кроки 
масштабування, аналізувати їхній вплив з точки зору операційних витрат та приймати найбільш ефективні 



ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

531

                   ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

рішення по вибору віртуальних машин, необхідних для розгортки реплік мікросервісів. Результати роботи можуть 
бути використані у подальших дослідженнях та реальних імплементаціях розробленої моделі у програмне забез-
печення, що дозволить покращити рівень обслуговування клієнтів додатків, побудованих на мікросервісній архі-
тектурі та скоротити операційні витрати завдяки проактивному масштабуванню і ефективнішому використанню 
ресурсів клауд-провайдерів.
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