
ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

526

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

©	 Шушура О. М., Ігнатов Д. A., 2025
	 Стаття поширюється на умовах ліцензії CC BY 4.0

УДК 004.75:004.4:519.8	 DOI https://doi.org/10.35546/kntu2078-4481.2025.3.2.67

О. М. ШУШУРА
доктор технічних наук, доцент,

професор кафедри цифрових технологій в енергетиці
Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського»
ORCID: 0000-0003-3200-720X

Д. A. ІГНАТОВ
аспірант кафедри цифрових технологій в енергетиці

Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського»

ORCID: 0009-0008-2864-8526

МОДЕЛЮВАННЯ ПРИЙНЯТТЯ РІШЕНЬ З УПРАВЛІННЯ РЕСУРСАМИ
МІКРОСЕРВІСІВ ТА ВИБОРУ ВІРТУАЛЬНИХ МАШИН

У СЕРЕДОВИЩІ KUBERNETES

Сучасні хмарні системи, побудовані з використанням мікросервісних архітектур, стикаються з критичною
проблемою ефективного управління ресурсами в умовах динамічного навантаження. Стандартні реактивні
механізми оркестратора Kubernetes, такі як Horizontal Pod Autoscaler, часто виявляються недостатніми через
затримки у реакції, відсутність врахування майбутніх трендів навантаження та інерційність процесів запус-
ку нових реплік мікросервісів і віртуальних машин. Це призводить до неефективного використання ресурсів,
коливань продуктивності (flapping) та зайвих операційних витрат. У відповідь на ці виклики в статті запропо-
новано комплексну математичну модель для оптимального проактивного управління ресурсами на основі про-
гнозування навантаження, динамічне масштабування мікросервісів із врахуванням затримок та оптимальне
розміщення подів на віртуальних машинах.

Метою даної роботи є розробка математичної оптимізаційної моделі для автоматичного управління ресур-
сами мікросервісів та динамічного вибору віртуальних машин. Формалізовано предметну область шляхом визна-
чення ключових множин: класів віртуальних машин, активних екземплярів віртуальних машин, типів мікросер-
вісів та їхніх реплік (подів). На основі історичних даних метрик CPU та оперативної пам’яті виконується
прогнозування навантаження на горизонті планування і для кожного типу мікросервіса розраховується бажана
кількість реплік, необхідна для обробки очікуваного навантаження. Сформовано та формалізовано цільову функ-
цію і обмеження задачі оптимального управління ресурсами мікросервісів та вибору віртуальних машин, спира-
ючись на сукупність прийнятих припущень.

Запропонований підхід забезпечує підвищення відмовостійкості та продуктивності мікросервісних додатків
при одночасному зниженні операційних витрат за рахунок усунення надмірного резервування та консолідації
навантаження на найбільш економічно ефективних типах віртуальних машин. Результати роботи становлять
теоретичну основу для подальших досліджень та практичної реалізації системи інтелектуального оркестру-
вання для Kubernetes.

Ключові слова: мікросервіси, Kubernetes, управління ресурсами, прогнозування навантаження, автомасшта-
бування, оптимізація, віртуальні машини, інформаційні технології, інформаційні системи.

O. M. SHUSHURA
Doctor of Technical Sciences, Associate Professor,

Professor at the Department of Digital Technologies in Energy
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”
ORCID: 0000-0003-3200-720X

D. A. IHNATOV
Postgraduate Student at the Department of Digital Technologies in Energy

National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

ORCID: 0009-0008-2864-8526

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

527

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

MODELING DECISION-MAKING FOR MICROSERVICE RESOURCE MANAGEMENT
AND VIRTUAL MACHINE SELECTION IN A KUBERNETES ENVIRONMENT

Modern cloud systems built on microservice architectures face a critical challenge of efficient resource management
under dynamic workloads. Standard reactive mechanisms of the Kubernetes orchestrator, such as the Horizontal Pod
Autoscaler, often prove insufficient due to delayed responses, lack of consideration for future load trends, and the inertia
of launching new microservice replicas and virtual machines. This results in inefficient resource utilization, performance
fluctuations (flapping), and excessive operational costs.

In response to these challenges, the paper proposes a comprehensive mathematical model for optimal proactive
resource management based on load forecasting, dynamic scaling of microservices with consideration of delays, and
optimal pod placement on virtual machines.

The aim of this work is to develop a mathematical optimization model for automated microservice resource
management and dynamic virtual machine selection. The subject domain is formalized through the definition of key
sets: classes of virtual machines, active instances of virtual machines, types of microservices, and their replicas (pods).
Based on historical CPU and memory metrics, load forecasting is performed on the planning horizon, and for each
type of microservice, the desired number of replicas required to handle the expected load is calculated. The objective
function and constraints of the problem of optimal resource management and virtual machine selection are constructed
and formalized, relying on a set of accepted assumptions.

The proposed approach increases the resilience and performance of microservice applications while simultaneously
reducing operational costs by eliminating excessive overprovisioning and consolidating workloads on the most cost-
effective types of virtual machines. The results provide a theoretical foundation for further research and practical
implementation of an intelligent orchestration system for Kubernetes.

Key words: microservices, Kubernetes, resource management, load forecasting, autoscaling, optimization, virtual
machines, information technology, information systems.

Постановка проблеми
Однією з ключових задач сучасної IT-інфраструктури є забезпечення ефективного та відмовостійкого функціону-

вання мікросервісних систем у хмарних середовищах за умов динамічно змінного навантаження. У разі різких змін
навантаження, інформаційна система має швидко масштабуватись, щоб уникнути втрати продуктивності або від-
мови в обслуговуванні, але водночас небажано, аби це призводило до надмірних витрат на обчислювальні ресурси.

Ця проблема ускладнюється тим, що сучасні оркестратори, такі як Kubernetes, часто використовують реак-
тивні механізми масштабування (наприклад, Horizontal Pod Autoscaler), які приймають рішення на основі мину-
лих чи поточних даних, не враховуючи майбутніх трендів навантаження та інерційності самої системи. Запуск
нових реплік мікросервісів та віртуальних машин потребує часу, що призводить до затримок у реакції на наван-
таження та неефективного використання ресурсів.

Крім того, вимоги до економічної ефективності та надійності сервісів обмежують можливості використання
простих рішень, таких як надлишкове резервування ресурсів. Це обумовлює актуальність пошуку інтелектуаль-
них та проактивних підходів до управління ресурсами. Вирішення цієї задачі є критично важливим для підви-
щення ефективності, надійності та зниження вартості експлуатації мікросервісних архітектур.

Аналіз останніх досліджень і публікацій
Стандартний підхід Kubernetes до управління ресурсами мікросервісів базується на Horizontal Pod Autoscaler

(HPA), який використовує прості метрики (CPU, memory) і порогові значення для прийняття рішень про масш-
табування [1]. Проте цей підхід має суттєві недоліки. По-перше, HPA реагує на зміни лише після їх виникнення,
що призводить до затримок у реакції [2]. По-друге, система не враховує час запуску нових реплік, що може
спричиняти тимчасове зниження продуктивності. Крім того, HPA схильний до такого явища як flapping – частого
додавання та видалення подів через чутливість до коротких сплесків навантаження.

Для подолання обмежень зазначеного вище реактивного підходу було запропоновано використовувати методи
прогнозуючого масштабування, що використовують машинне навчання для передбачення майбутнього наван-
таження [3,4]. Також при порівнянні ARIMA, Prophet та LSTM-мереж виявилося, що найбільш вдалим є вибір
на користь ARIMA [5]. Але незважаючи на переваги, дослідження зосереджуються лише на розрахунку бажаної
кількості реплік, не розглядаючи питання їхнього розміщення на віртуальних машинах, що створює розрив між
прогнозуванням потреб та реальним забезпеченням ресурсів.

Окрім цього, інше дослідження [6] визнає необхідність врахування інерційності системи автомасштабування.
У роботі було розроблено алгоритм DACS (Delay-Aware Container Scheduling), який покликаний враховувати
затримки обробки та мережі під час запуску подів, хоча і не розглядає час, якого потребує под при старті.

Вбудовані механізми розміщення подів у Kubernetes реалізуються через kube-scheduler та плагін
NodeResourcesFit. Система підтримує різні стратегії розподілу ресурсів: LeastAllocated (за замовчуванням) прагне
рівномірно розподілити навантаження між вузлами, тоді як MostAllocated та RequestedToCapacityRatio реалізу-
ють власну стратегію bin packing для максимізації утилізації [7].

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

528

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

У той же час було продемонстровано, що інтегровані підходи для розподілення подів можуть досягати до 58 %
зменшення витрат порівняно зі стандартним методом [8]. Даний підхід поєднує best-fit bin packing для початко-
вого розміщення, динамічне перепланування для консолідації робочих навантажень та автомасштабування для
адаптації до змін попиту.

У контексті математичного моделювання управління ресурсами в Kubernetes можна відзначити дослідження,
яке запропонувало динамічну модель, що враховує часові параметри та низькорівневі обмеження оптимізації
[9]. Модель спрямована на регулювання не лише призначенням подів до віртуальних машин, але й керуванням
увімкненням та вимкненням машин з метою мінімізації середньої кількості працюючих машин та максимізації
коефіцієнта утилізації ресурсів.

Прогнозування навантаження також розглядалось у дослідженні [10] для динамічного вибору і міграції вір-
туальних машин у хмарних середовищах. Хоча при прогнозуванні використовувались агреговані метрики утилі-
зації, що не дозволяє використовувати цей підхід при необхідності більш гнучких налаштувань, які можуть бути
надзвичайно важливими у контексті мікросервісної архітектури.

Таким чином, актуальною є розробка комплексної моделі, яка б поєднувала прогнозування навантаження,
динамічне масштабування мікросервісів з урахуванням затримок, оптимальне розміщення на віртуальних маши-
нах та динамічне керування життєвим циклом цих машин для мінімізації сумарних витрат.

Формулювання мети дослідження
Метою даної роботи є розробка математичної оптимізаційної моделі для автоматичного управління ресурсами

мікросервісів та динамічного вибору віртуальних машин. Розроблена модель має дозволити перейти від стан-
дартного реактивного масштабування до проактивного, що забезпечить кращу продуктивність мікросервісної
системи при динамічному навантаженні. Особливу увагу слід приділити вирішенню задачі пакування, оскільки
це призведе до зниження операційних витрат завдяки більш ефективному замовленню віртуальних машин та
використанню їхніх ресурсів.

Для досягнення поставленої мети необхідно вирішити задачі:
–	 описати основні характеристики предметної області з використанням математичного апарату теорії

множин;
–	 сформувати та формалізувати цільову функцію та обмеження задачі оптимального управління ресурсами

мікросервісів і вибору віртуальних машин, спираючись на сукупність прийнятих припущень.
Викладення основного матеріалу дослідження

Формалізація характеристик предметної області включає формування переліку основних об’єктів предметної
області та представлення їх характеристик з використанням теорії множин.

Основними об’єктами предметної області в задачі управління ресурсами мікросервісів та вибору віртуальних
машин визначено:

–	 віртуальні машини, які відносяться до певного типу, що клауд провайдер надає в оренду з певними обчис-
лювальними ресурсами у вигляді CPU та пам’яті;

–	 міскросервіси (поди), які належать до певного типу мікросервісів та розміщені на деякій активній вірту-
альній машині.

Враховуючи, що зазначені об’єкти розглядаються в нестаціонарних умовах, під час формалізації їх характерис-
тик будемо використовувати дискретну рівномірно розподілену з кроком Dt сітку часу T = {t0, t1, …, tN |ti = i ⋅ Dt} де
t0 початковою точкою. Далі наведена формалізація характеристик зазначених об’єктів.

Під час запуску віртуальної машини розробник чи адміністратор повинен обрати певний тип віртуальної
машини з поміж списку, який пропонується клауд провайдером. Різні типи розрізняються між собою як ресурс-
ними характеристиками, так і вартістю використання. Відповідно, формується множина класів віртуальних
машин cj ∈ C де j номер класу. Кожен тип віртуальної машини cj характеризується кортежем (cpuj, memj, costj) де
cpuj – кількість віртуальних CPU (vCPU); memj – об’єм оперативної пам’яті; costj – вартість використання однієї
віртуальної машини типу cj за один крок Dt. Активні протягом часу спостереження віртуальні машини формують
множину V, кожен елемент якої описується кортежем (, ,).start stop

j k kc t t Кожен екземпляр vk наслідує всі ресурсні
характеристики і вартість свого класу cj ∈ C, а також має моменти запуску і зупинки відповідно – .,start stop

k kt t
Зазначені множини дозволяють обчислювальні ресурси, які клієнт отримує від клауд-провайдера для запуску
мікросервісів.

Мікросервісна архітектура дозволяє краще справлятися з динамічним навантаженням при використанні
додатків: якщо навантаження зростає лише на певний мікросервіс, то можна збільшити кількість реплік (подів)
лише конкретного мікросервіса, а не горизонтально масштабувати великий моноліт. Завдяки такому більш точ-
ному масштабуванні можна скоротити операційні витрати. Нехай S – множина всіх типів мікросервісів, кожен
елемент якої характеризується кортежем min max(, , , , ,),start stop

l l k k l lcpu mem t t n n де cpul, meml – ресурси, необхідні для
однієї репліки даного типу; ,start stop

k kt t – час запуску та зупинки репліки; min max,l ln n – мінімальна та максимальна

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

529

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

кількість реплік, що мають бути активними протягом усього часу. Позначимо nl,i як кількість реплік мікросервісу
sl – момент часу ti, яка у будь-який момент часу має задовольняти умові min max

, .l l i ln n n≤ ≤ Запущені в роботу за
весь час спостереження репліки (поди) мікросервісів формують множину P, кожен елемент якої характеризується
кортежем (, , ,),start stop

k l p pv s t t де vk – конкретна віртуальна машина, на якій розміщений под; sl – клас мікросервіса, до
якого належить под; ,start stop

p pt t – моменти запуску та зупинки пода. Кожен под pp наслідує всі характеристики свого
типу sl. Зазначимо, що розміщення пода на активній віртуальній машині означає використання відповідних ресур-
сів даної віртуальної машини. Окрім цього, слід зазначити, що у процесі роботи репліки мікросервісів можуть
переміщуватися між активними віртуальними машинами: под зупиняється на одній машині та запускається на
іншій. Тому для спостереженням даного явища міграції введемо бінарну змінну xp,k,i ∈ {0, 1}, яка характеризує, чи
розміщений под pp на віртуальній машині vk у момент часу ti. Дані множини дозволяють поєднати наявні ресурси,
придбані у вигляді віртуальних машин та їхніх обчислювальних ресурсів, та власне використання цих ресурсів
компонентами інфраструктури додатків.

Розглянемо використання ресурсів детальніше: кожен под pp кожен момент часу використовує певний обсяг
ресурсів CPU та оперативної пам’яті. Відповідно, введемо множину метрик подів PM = {(cpup,i, memp,i) | p ∈ P,
ti ∈ T}, до якої входять спостереження кількості спожитих ресурсів кожною з реплік мікросервісів. Оскільки для
прийняття рішень про масштабування використовуються агреговані по мікросервісам метрики, введемо також
і множину метрик мікросервісів SM = {(cpul,i, meml,i) | sl ∈ S, ti ∈ T}, де

, ,

| p l

l i p i
p P s s

cpu cpu
∈ =

= ∑

, ,
|

.
p l

l i p i
p P s s

mem mem
∈ =

= ∑
Дані множини дозволяють спостерігати за поточним навантаженням у вигляді обсягу спожитих ресурсів.

Для вирішення задачі оптимального управління ресурсами мікросервісів та вибору віртуальних машин, необ-
хідно на основі формалізованих множин об’єктів предметної області та їх характеристик розробити її матема-
тичну постановку.

Формальна постановка задачі містить обмеження та цільову функцію задачі оптимального управління ресур-
сами мікросервісів і вибору віртуальних машин, сформованих на основі набору припущень.

Зазначена задача оптимального управління формується на основі прогнозування навантаження по викорис-
танню мікросервісів на деякому горизонті прогнозування ti = {ti + 1, ti + 2, …, ti + H} ⊂ T, де H – глибина горизонту. На
основі історичних даних метрик SM формується така функція f, що , :i lt T s S∀ ∈ ∀ ∈

	    
, 1 , 2 , , , 1 ,0() (, , ,) (, , ,),l l i l i l i H l i l i lSM SM SM SM f SM SM SM+ + + -τ = =… … 	 (1)

де SMl,i – значення метрик для мікросервісу sl момент ti;  , 1l iSM + – прогноз майбутнього значення для мікросер-
вісу sl момент ti + 1.

Далі визначається кількість реплік мікросервісів, яка необхідна для обробки прогнозованого навантаження на
горизонті t, використовуючи значення прогнозу  ():lSM τ

	  () ()
   

, 1, 1 , ,* max , , ,max , ,l il i l i H l i H
l l l l

l l l l l l l l

cpu cpumem mem
SM n

cpu mem cpu mem
++ + +

        τ τ = ⋅σ … ⋅σ    α ⋅ α ⋅ α ⋅ α ⋅     
 	 (2)

де al ∈ [0, 1] – коефіцієнт утилізації, який визначає цільовий рівень використання ресурсів однієї репліки мікро-
сервіса sl; sl ≥ 1 – коефіцієнт запасу на помилку прогнозування.

Даний розрахунок забезпечує, що кількість реплік буде достатньою для обробки прогнозованого наванта-
ження по обом метрикам, коефіцієнт a дозволяє управління ефективністю використання ресурсів, а коефіцієнт s
дозволяє справлятися з неточністю прогнозу.

Фактична кількість реплік nl(t) змінюється з затримкою відносно бажаної кількості *()ln τ через затримки
запуску подів, тому для урахування цього явища використаємо наступне рівняння:

	 , , 1 , ,
: ,start start

l l
i l i l i l i d l i d

t n n a a+ -
- - -

∀ ∈ τ = + - 	 (3)

де nl,i – фактична кількість реплік мікросервісу sl у момент ti; ,
start stop

start stopl l
l l

t t
d d

t t
= =

Δ Δ
 – затримки запуску/зупинки

в кроках, викликані часом запуску/зупинки однієї репліки;
, ,

таstart stop
l ll i d l i d

a a+ -
- - – кількість реплік мікросервіса типу si,

рішення про запуск/зупинку яких було прийнято start stop
l ld d кроків назад.

Аналогічно враховуються затримки під час запуску чи зупинки віртуальних машин:

	 , , 1 , ,
: ,start stopi j i j i j i d j i d

t y y u u+ -
- - -

∀ ∈ τ = + - 	 (4)

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

530

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

де yj,i – фактична кількість активних віртуальних машин cj у момент ti; ,
start stop

start stopt t
d d

t t
= =

Δ Δ
 – затримки запуску/

зупинки в кроках, викликані часом запуску/зупинки віртуальної машини;
, ,

та start stopl i d l i d
u u+ -

- - –	 кількість віртуаль-
них машин типу cj, рішення про запуск/зупинку яких було прийнято dstart/dstop кроків назад.

Обмеження рішень про зупинку реплік мікросервісів формулюється як:

	 , , ., :i l l i l it T s S a n-∀ ∈ ∀ ∈ ≤ 	 (5)

Схожим чином формулюється обмеження рішень про зупинку віртуальних машин:

	 , , ., :i j j i j it T c C u y-∀ ∈ ∀ ∈ ≤ 	 (6)

аланс розміщення подів має гарантувати, що їхнє розміщення збігається з загальною кількістю реплік
мікросервісів:
	 , , ,, .:i l p k i l i

j

t T s S x n∀ ∈ ∀ ∈ =∑ 	 (7)

Ресурсні обмеження покликані гарантувати, що система не використовує більше обчислювальних ресурсів,
ніж насправді існує:

	 , , ,, , :i l j l j i l j i j
l

t T s S c C n cpu y cpu∀ ∈ ∀ ∈ ∀ ∈ ⋅ ≤ ⋅∑ . 	 (8)

	 , , ,, , : .i l j l j i l j i j
j

t T s S c C n mem y mem∀ ∈ ∀ ∈ ∀ ∈ ⋅ ≤ ⋅∑ 	 (9)

Обмеження покриття попиту для задачі пакування часто формулюється через м’яке обмеження для того, аби
залишити задачу розв’язною, тож обмеження можна сформулювати наступним чином:

	 *
, , , ,, : ,i l l i l i l i l it T s S n n e e- +∀ ∈ ∀ ∈ = - + 	 (10)

де ,l ie- кількість невистачаючих реплік мікросервіса типу sl у момент ti; ,l ie- кількість надлишкових реплік мікро-
сервіса типу sl у момент ti.

Основні характеристики об’єктів мають бути невід’ємними:

	 , , , , , , 0., , , , : , , , ,i l j p k l i j i p k i l i j it T s S c C p P v V n y x a u Z± ±∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∈ 	 (11)

Тепер, коли обмеження моделі було формалізовано, можемо перейти до опису цільової функції, яка має змен-
шити витрати на оренду віртуальних машин та врахувати негативні наслідки, описані в концептуальній моделі,
у вигляді штрафів. Отже, цільова функція, що складається з сумарних витрат на оренду віртуальних машин
протягом усього часу спостереження, штрафів за запуск/зупинку нових віртуальних машин задачі, штрафів за
запуск/зупинку нових реплік мікросервісів та штрафів за переміщення подів між віртуальними машинами, має
наступний вид:

	 () (), , , , , , , , , 1
, , , , ,

min cos .j j i j i j i l i l i p k i p k i
i j i j i l p k i

t y u u e e x x+ + - - + + - -
-

 ⋅ + λ + λ + ω + ω + +j - 
 
∑ ∑ ∑ ∑ 	 (12)

Обмеження (3)–(11) та цільова функція (12) сформовані на основі припущень:
–	 всі часові параметри системи, такі як час запуску чи зупинки репліки мікросервіса або віртуальної машини,

є цілими та кратними Dt;
–	 для всіх типів віртуальних машин час запуску і зупинки є однаковим;
–	 вартість використання віртуальної машини певного типу є сталою для всіх класів протягом усього періоду

спостереження;
–	 під час розрахунку кількості поточних реплік мікросервіса, здатних обробляти навантаження, врахову-

ються лише ті репліки, рішення про зупинку яких ще не було прийнято;
–	 під час розрахунку кількості активних віртуальних машин, на яких можуть бути розміщені поди, врахову-

ються лише ті віртуальні машини, рішення про зупинку яких ще не було прийнято.
Висновки

Таким чином, в роботі запропоновано підхід до моделювання прийняття рішень по управлінню ресурсами
мікросервісів у середовищі Kubernetes та динамічному вибору віртуальних машин, який базується на прогнозу-
ванні навантаження, динамічному моделюванні та bin packing. Виконано формалізацію основних характеристик
предметної області з використанням математичного апарату теорії множин, та розроблено формальну постановку
задачі оптимального управління ресурсами мікросервісів і вибору віртуальних машин.

Запропонована модель дозволяє прогнозувати майбутнє навантаження на систему, визначати необхідні кроки
масштабування, аналізувати їхній вплив з точки зору операційних витрат та приймати найбільш ефективні

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

531

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

рішення по вибору віртуальних машин, необхідних для розгортки реплік мікросервісів. Результати роботи можуть
бути використані у подальших дослідженнях та реальних імплементаціях розробленої моделі у програмне забез-
печення, що дозволить покращити рівень обслуговування клієнтів додатків, побудованих на мікросервісній архі-
тектурі та скоротити операційні витрати завдяки проактивному масштабуванню і ефективнішому використанню
ресурсів клауд-провайдерів.

Список використаної літератури
1.	 Kubernetes. Horizontal Pod Autoscaling. URL: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/ (дата звернення: 03.07.2025).
2.	 Федоришин Б., Красько О. (2024) Міграція сервісів в кластері Kubernetes на основі прогнозування

навантаження. Інфокомунікаційні технології та електронна інженерія, випуск 4, номер 2, cторінки 82–92.
URL: https://doi.org/10.23939/ictee2024.02.082 (дата звернення: 09.07.2025).

3.	 Сімакін С., Божуха Л. (2024) Прогнозування навантаження на сервер з використанням ШІ для оптимізації
веб–сервісів. Актуальні проблеми автоматизації та інформаційних технологій, номер 28, сторінки. 234–243.
URL: http://doi.org/10.15421/432422 (дата звернення: 12.07.2025).

4.	 Snehal Chaflekar, Rajendra Rewatkar. (2025) Novel load prediction in microservice architecture using attention
mechanism-based deep LSTM networks. International Journal of Innovative Research and Scientific Studies, vol. 8,
no. 3, pp. 1046–1058. URL: https://doi.org/10.53894/ijirss.v8i3.6751 (дата звернення: 15.07.2025).

5.	 Гутман Д., Сирота О. (2023) Проактивне автоматичне масштабування вверх для Kuberneters. Адаптивні сис-
теми автоматичного управління, номер 1, сторінки 32-38. URL: https://doi.org/10.20535/1560-8956.42.2023.278925
(дата звернення: 23.07.2025).

6.	 Wei-Kuang Lai, You-Chiun Wang, Syu-Chen Wei. (2023) Delay-Aware Container Scheduling in Kubernetes.
IEEE Internet of Things Journal, vol. 10, no. 13, pp. 11813–11824. URL: https://doi.org/10.1109/JIOT.2023.3244545
(дата звернення: 01.08.2025).

7.	 Kubernetes. Resource Bin Packing. URL: https://kubernetes.io/docs/concepts/scheduling-eviction/resource-bin-
packing/ (дата звернення: 07.08.2025).

8.	 Rodriguez, M. A., & Buyya, R. (2018) Containers Orchestration with Cost-Efficient Autoscaling in Cloud
Computing Environments. ArXiv, abs/1812.00300. URL: https://doi.org/10.48550/arXiv.1812.00300 (дата звернення:
15.08.2025).

9.	 Guruge PB and Priyadarshana YHPP. (2025) Time series forecasting-based Kubernetes autoscaling using
Facebook Prophet and Long Short-Term Memory. Frontiers in Computer Science, vol. 7. URL: https://doi.org/10.3389/
fcomp.2025.1509165 (дата звернення: 19.08.2025).

10.	Maiyza, A. I., Hassan, H. A., Sheta, W. M. (2025) VTGAN based proactive VM consolidation in cloud data centers
using value and trend approaches. Scientific Reports, vol. 15, no. 20133. URL: https://doi.org/10.1038/s41598-025-04757-z
(дата звернення: 27.08.2025).

References
1.	 Kubernetes (n.d.). Horizontal Pod Autoscaling. Kubernetes. Retrieved from: https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/ (accessed 03 July 2025).
2.	 Fedoryshyn B., Krasko O. (2024) Mighracija servisiv v klasteri Kubernetes na osnovi proghnozuvannja

navantazhennja [Migration of services in a kubernetes cluster based on workload forecasting]. Infocommunication
technologies and electronic engineering journal, vol. 4, no. 2, pp. 82-92. Retrieved from: https://doi.org/10.23939/
ictee2024.02.082 (accessed 09 July 2025).

3.	 Simakin S., Bozhukha L. (2024) Proghnozuvannja navantazhennja na server z vykorystannjam ShI dlja optymizaciji
veb–servisiv. [Server load forecasting using AI for web services optimization]. Aktualjni problemy avtomatyzaciji
ta informacijnykh tekhnologhij [Current problems of automation and information technologies] № 28, pp. 234–243.
Retrieved from: http://doi.org/10.15421/432422 (accessed 12 July 2025).

4.	 Snehal Chaflekar, Rajendra Rewatkar. (2025) Novel load prediction in microservice architecture using attention
mechanism-based deep LSTM networks. International Journal of Innovative Research and Scientific Studies, vol. 8,
no. 3, pp. 1046–1058. Retrieved from: https://doi.org/10.53894/ijirss.v8i3.6751 (accessed 15 July 2025).

5.	 Gutman D., Sirota O. (2023) Proaktyvne avtomatychne masshtabuvannja vverkh dlja Kuberneters [Proactive
Upstream Autoscaling for Kubernetes]. Adaptyvni systemy avtomatychnogho upravlinnja [Adaptive Automatic Control
Systems] no. 1, pp. 32–38. Retrieved from: https://doi.org/10.20535/1560-8956.42.2023.278925 (accessed 23 July 2025).

6.	 Wei-Kuang Lai, You-Chiun Wang, Syu-Chen Wei. (2023) Delay-Aware Container Scheduling in Kubernetes. IEEE
Internet of Things Journal, vol. 10, no. 13, pp. 11813 – 11824. Retrieved from: https://doi.org/10.1109/JIOT.2023.3244545
(accessed 01 August 2025).

ВІСНИК ХНТУ № 3(94), Ч. 2, 2025 р.

532

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

7.	 Kubernetes (n.d.). Resource Bin Packing. Kubernetes. Retrieved from: https://kubernetes.io/docs/concepts/
scheduling-eviction/resource-bin-packing/ (accessed 07 August 2025).

8.	 Rodriguez, M. A., & Buyya, R. (2018) Containers Orchestration with Cost-Efficient Autoscaling in Cloud
Computing Environments. ArXiv, abs/1812.00300. Retrieved from: https://doi.org/10.48550/arXiv.1812.00300 (accessed
15 August 2025).

9.	 Guruge PB and Priyadarshana YHPP. (2025) Time series forecasting-based Kubernetes autoscaling using Facebook
Prophet and Long Short-Term Memory. Frontiers in Computer Science, vol. 7. Retrieved from: https://doi.org/10.3389/
fcomp.2025.1509165 (accessed 19 August 2025).

10.	Maiyza, A. I., Hassan, H. A., Sheta, W. M. (2025) VTGAN based proactive VM consolidation in cloud data
centers using value and trend approaches. Scientific Reports (electronic journal), vol. 15, no. 20133. Retrieved from:
https://doi.org/10.1038/s41598-025-04757-z (accessed 27 August 2025).

Дата першого надходження рукопису до видання: 29.09.2025
Дата прийнятого до друку рукопису після рецензування: 23.10.2025

Дата публікації: 28.11.2025

