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ІНТЕЛЕКТУАЛЬНІ ТЕХНОЛОГІЇ ВИЗНАЧЕННЯ ХАРАКТЕРИСТИК ЯКОСТІ 
МЕТАЛЕВИХ ВИРОБІВ В ПРОЦЕСАХ ПОШАРОВОГО УТВОРЕННЯ

У роботі досліджено інтелектуальні технології визначення характеристик якості металевих виробів, виготов-
лених методами пошарового утворення. Виконано аналіз сучасних публікацій узагальнено основні типи дефектів 
у процесах лазерного плавлення металевого порошку, їх зв’язок із морфологією порошкової сировини, режимами 
плавлення та особливостями формування мікроструктури. Показано, що поєднання методів комп’ютерного зору 
та машинного навчання дає змогу автоматизувати оцінювання якості порошку, in-situ моніторинг melt-pool, вияв-
лення аномальних режимів та прогнозування пористості по шарах. Особливу увагу приділено цифровим двійникам 
адитивних процесів, які відтворюють теплові, механічні та мікроструктурні поля й забезпечують багатоварі-
антну оптимізацію параметрів друку до проведення експериментів. Обґрунтовано доцільність інтеграції даних 
цифрового моделювання, сигналів процесного моніторингу та результатів мікроструктурного аналізу в єдину 
інтелектуальну систему контролю якості, орієнтовану на відповідальні машинобудівні деталі. Запропоновано 
структурну схему такої системи, у якій виділено модулі аналізу сировини, планування процесу, in-situ моніторингу, 
прогнозування дефектів, адаптивного керування та постпроцесної валідації. Показано, що впровадження подібних 
систем створює підґрунтя для самонавчальних адитивних виробничих комплексів, зменшує рівень пористості та 
підвищує відтворюваність механічних властивостей виробів. Наукова новизна роботи полягає в систематизації 
підходів до поєднання цифрових двійників із моделями глибокого навчання та формуванні узагальненої архітек-
тури інтелектуальної системи оцінювання якості в металевому адитивному виробництві. Практичне значення 
отриманих результатів пов’язане з можливістю зниження обсягу натурних випробувань, скорочення тривалості 
виведення нових виробів на ринок і підвищення надійності відповідальних елементів конструкцій.

Ключові слова: адитивне виробництво металів, машинне навчання, melt-pool, цифровий двійник, пористість, 
контроль якості.
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INTELLIGENT TECHNOLOGIES FOR DETERMINING QUALITY CHARACTERISTICS  
OF METAL PRODUCTS IN LAYER-BY-LAYER FORMATION PROCESSES

The study examines intelligent technologies for assessing the quality of metal parts produced by layer-wise additive 
manufacturing. Based on an analysis of recent publications, the main defect types in laser powder bed fusion processes are 
summarized together with their links to powder morphology, melting regimes and microstructural evolution. It is shown 
that the combination of computer-vision and machine-learning methods enables automated powder characterization, 
in-situ melt-pool monitoring, detection of anomalous regimes and layer-wise porosity prediction. Particular attention 
is given to digital twins of additive processes, which reproduce thermal, mechanical and microstructural fields and 
support multi-scenario optimization of printing parameters before physical experiments are carried out. The feasibility of 
integrating physics-based simulation data, process-monitoring signals and microstructural characterization results into 
a unified intelligent quality-control system focused on safety-critical machine-building components is substantiated. A 
structural scheme of such a system is proposed, comprising modules for raw-material analysis, process planning, in-situ 
monitoring, defect prediction, adaptive control and post-process validation. It is demonstrated that the implementation 
of such systems provides a basis for self-learning additive manufacturing lines, reduces porosity levels and improves 
the repeatability of mechanical properties of parts. The scientific contribution of the work lies in consolidating current 
approaches to coupling digital twins with deep-learning models and in formulating a generalized architecture of an 
intelligent quality-assessment framework for metal additive manufacturing. The practical relevance is associated with 
the potential to reduce the scope of destructive testing, shorten the time-to-market for new products and increase the 
reliability of critical structural elements operating under demanding service conditions.

Key words: metal additive manufacturing, machine learning, melt pool, digital twin, porosity, quality control.

Постановка проблеми
Адитивне виготовлення металевих виробів перетворилося на одну з базових технологій сучасного високоточ-

ного машинобудування. Локалізоване введення енергії в шар порошкового матеріалу та пошарове нарощування 
геометрії деталі дають змогу створювати складні внутрішні канали, решітчасті структури та топологічно оптимі-
зовані форми, що важко або неможливо реалізувати традиційними методами. Разом із тим, металеві процеси на 
основі лазерного або електронного променя характеризуються значною кількістю змінних параметрів і складною 
фізикою тепломасообміну.

За даними оглядових робіт, присвячених оцінюванню адитивного виробництва [1, 2], найпоширенішими 
дефектами є газова та ключова пористість, зони неповного плавлення, мікротріщини, локальні перегріви й сильна 
анізотропія структури. Їхня природа зумовлена не лише вибраним матеріалом, а й морфологією порошку, якістю 
укладання шару, стабільністю розплавленої ванни, стратегією сканування й режимами охолодження. Традиційні 
методи контролю – макро- і мікроструктурний аналіз вибіркових зразків, неруйнівні випробування лише напри-
кінці технологічного ланцюга – не дозволяють своєчасно виявляти ділянки підвищеного ризику та прогнозувати 
властивості деталей до завершення їх виготовлення.

Розвиток сенсорних систем, комп’ютерного зору та методів машинного навчання привів до появи концепції 
інтелектуального контролю якості, коли рішення приймаються на основі масивів даних, що надходять із різних 
рівнів процесу [3, 4]. Паралельно розвивається напрям цифрових двійників, у межах якого для кожного виробу 
формується модель, здатна відтворювати теплові та механічні процеси в зоні побудови [7, 8]. Поєднання цих під-
ходів дає змогу перейти від постфактум-оцінювання до прогнозного керування якістю, однак на практиці відсутня 
цілісна система, яка б інтегрувала аналіз порошку, цифрове моделювання, in-situ моніторинг та постпроцесну 
валідацію в єдиний інтелектуальний контур. Саме необхідність розроблення такої інтегрованої системи визна-
чення характеристик якості металевих виробів у процесах пошарового утворення і становить основну наукову 
проблему даної роботи.

Аналіз останніх досліджень і публікацій
Адитивне виготовлення металевих виробів сьогодні розглядають як одну з ключових технологій високоточ-

ного машинобудування. Роботи [1, 2] показують, що завдяки локалізованому введенню енергії в шар порошкового 
матеріалу та пошаровому нарощуванню геометрії стає можливим створення топологічно оптимізованих деталей 
зі складними внутрішніми каналами й решітчастими структурами. Узагальнений вигляд сучасних адитивних тех-
нологій та компонування обладнання для LPBF/SLM наведено на рис. 1, де показано типову конфігурацію оптич-
ної системи, порошкових бункерів, будівельної платформи та інертної атмосфери.

Попри очевидні переваги, металеві адитивні процеси супроводжуються широким спектром дефектів, які без-
посередньо впливають на експлуатаційні властивості виробів. У оглядових публікаціях [1, 2] до найпоширеніших 
відносять газову та ключову пористість, зони неповного плавлення, мікротріщини, локальні перегріви, а також 
виражену анізотропію структури. У табл. 1 узагальнено основні типи дефектів, їх характерні прояви, чинники 
виникнення та наслідки для механічних властивостей. Видно, що значна частина дефектів пов’язана не тільки 
з вибраним матеріалом, а й із сукупністю технологічних факторів: морфологією порошку, якістю нанесення шару, 
стабільністю ванни розплаву (melt-pool), стратегією сканування та режимами охолодження [2, 4].
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а) б) 

 Рис. 1. Приклади сучасних адитивних технологій: a) – узагальнена схема процесу лазерного плавлення 
металевого порошку; б) – схема системи in-situ моніторингу процесу LPBF із використанням фотодіода 

для реєстрації випромінювання melt-pool [2, 17]

Таблиця 1 
Основні типи дефектів у металевому адитивному виробництві та чинники їх виникнення

Тип дефекту Характеристика Основні причини Наслідки для властивостей
Газова пористість Дрібні сферичні пори Захоплення газу, домішки, дегазація порошку Зниження міцності, підвищена 

втомна чутливість
Ключова пористість Витягнуті пори, тунельні 

порожнини
Надлишкова енергія, ключовий режим 
плавлення

Крихке руйнування, виникнення 
тріщин

Неповне плавлення Непроварені ділянки між 
треками/шарами

Низька потужність лазера, надмірна швидкість 
сканування

Різке зниження міцності, локальні 
концентрації напружень

Мікротріщини Тріщини в областях високих 
градієнтів

Термічні напруження, неправильна стратегія 
сканування

Крихке руйнування, поширення 
тріщин

Анізотропія 
структури

Текстурована, напрямна 
структура зерен

Однобічна стратегія сканування, несиметричне 
охолодження

Різні властивості в різних напрямках 
деталі

На рівні сировини критичними є розподіл розмірів частинок, форма та стан поверхні порошку. Надто 
широкий гранулометричний спектр або значна кількість деформованих частинок призводять до погіршення 
реології шару, утворення локальних зон пониженої щільності, що, у свою чергу, змінює поглинання енергії та 
режим плавлення [1, 2]. Для ілюстрації в роботі використано зображення металевого порошку та результатів 
його оброблення алгоритмами комп’ютерного зору (рис. 2), де показано сегментацію частинок і класифікацію 
їх за формою. Сучасні дослідження демонструють, що на основі таких зображень можна обчислювати показ-
ники сферичності, ексцентриситет, шорсткість поверхні та будувати інтегральні критерії придатності партії 
порошку [1, 3, 10].

Застосування згорткових нейронних мереж (ResNet, EfficientNet тощо) для аналізу зображень порошкових роз-
сипів стало окремим напрямом інтелектуального контролю. У працях [3, 6, 10] показано, що багатокласові кла-
сифікатори розрізняють частинки типу «придатні», «деформовані», «агломеровані», «забруднені» та формують 
індекси якості партій. На основі морфологічних характеристик і результатів випробувань надрукованих зразків 
будують регресійні моделі, які дозволяють оцінювати пористість і міцність ще до початку друку [6, 10]. У [3, 10] 
візуальні ознаки поєднують з даними про хімічний склад і вологість у мультиканальних моделях, що підвищує 
точність контролю при багаторазовому використанні порошку.

Другий напрям стосується інтелектуального контролю самого процесу побудови деталі. В установках LPBF 
застосовують комплекси оптичних і тепловізійних камер, фотодіодів та іноді акустичних сенсорів [3, 4, 7]. На 
основі цих даних оцінюють геометрію melt-pool, розподіл температури, стабільність режиму плавлення та вияв-
ляють перегріви й зони неповного проплавлення. Узагальнену структуру системи in-situ моніторингу із фотодіо-
дом для реєстрації випромінювання melt-pool наведено на рис. 1. Сенсор розташовують так, щоб він «бачив» зону 
друку, а сигнал обробляють у реальному часі.
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Рис. 2. Приклад морфології металевого порошку та результат сегментації частинок [18]

У [4, 5] зображення melt-pool кожного треку перетворюють на набір геометричних та фотометричних ознак, 
які подають на вхід класифікатора. При використанні глибоких згорткових мереж модель навчається безпосеред-
ньо на термограмах або відеокадрах. Показано, що такі підходи з високою достовірністю розрізняють стабіль-
ний режим, режим зі схильністю до утворення газових пор та режим неповного плавлення [3, 4, 7]. Оброблення 
часових рядів інтенсивності випромінювання чи акустичних сигналів із застосуванням LSTM, GRU та TCN дає 
змогу прогнозувати майбутній стан melt-pool і виявляти аномалії до формування дефектів [5, 10]. Для інтеграції 
оптичних, ІЧ та акустичних даних пропонуються моделі зі спільним простором ознак, що підвищує стійкість до 
шумів; окремі роботи демонструють реалізацію замкненого контуру керування, коли за виявленням відхилень 
автоматично коригують параметри процесу [3, 7].

Третій напрям пов’язаний із застосуванням глибокого навчання для безпосереднього прогнозування порис-
тості та дефектів. У [5, 6, 8] термограми, карти інтенсивності, розподіли потужності та швидкості сканування 
узгоджують із даними рентгенівської комп’ютерної томографії, після чого нейронні мережі навчають оцінювати 
пористість по шарах і в об’ємних фрагментах деталі. Використовують як двовимірні моделі з механізмом уваги [5], 
так і тривимірні згорткові мережі, що повертають просторові карти розташування пор [6, 8]. Окремий клас робіт 
спрямований на прогноз механічних властивостей: поєднання інформації про пористість, розмір зерен, текстуру 
та залишкові напруження в єдиній моделі дає змогу оцінювати границю втомної та статичної міцності без повного 
комплексу випробувань [6, 10], що розглядають як основу віртуальної сертифікації відповідальних виробів.

Паралельно розвивається концепція цифрових двійників адитивних процесів. У працях [7, 11–13, 15] цифро-
вий двійник LPBF/SLM описують як сукупність термічних, механічних та мікроструктурних моделей, синхроні-
зованих із реальним процесом друку. Їх застосовують для прогнозування полів температур, залишкових напру-
жень, деформацій та еволюції мікроструктури, а також для оптимізації орієнтації деталей, систем підтримок 
і стратегії сканування. Частина авторів пропонує гібридні схеми, де результати чисельного моделювання вико-
ристовують як джерело синтетичних даних для навчання нейронних мереж, а самі мережі потім застосовують для 
швидкого прогнозування якості в режимі, наближеному до реального часу [7, 12].

Разом узяті, ці дослідження демонструють перехід від локальних рішень (аналіз окремих дефектів чи лише 
одного етапу процесу) до комплексних інтелектуальних систем контролю якості. Водночас проблема інтеграції 
аналізу порошку, in-situ моніторингу, цифрових двійників та мікроструктурної валідації в єдину архітектуру для 
відповідальних машинобудівних деталей залишається недостатньо опрацьованою, що й зумовлює актуальність 
даного дослідження.

Формулювання мети дослідження
Розглянути можливість застосування концепції цифрових двійників щодо аналізу структури і властивостей 

матеріалів та готових виробів, отриманих пошаровим формоутворенням в адитивних технологіях. Встановити 
взаємозв’язок ступеня ефективності препроцесорної підготовки засобами смартизації технологічних процесів 
адитивного виробництва з комплексом показників якості і технічних вимог, які пред’являються до відповідальних 
деталей у машинобудуванні, отриманих методами пошарового осадження матеріалу.

Викладення основного матеріалу дослідження
З огляду на результати огляду можна виділити декілька ключових напрямів, які доцільно інтегрувати в єдину 

інтелектуальну систему визначення характеристик якості металевих виробів. Перший напрям пов’язаний 
із застосуванням цифрових двійників адитивних процесів. Цифровий двійник розглядають як сукупність 
взаємопов’язаних термічних, механічних та, за потреби, мікроструктурних моделей, що відтворюють перебіг 
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процесу побудови деталі в часі [7, 11–13, 15]. Теплова підсистема описує поглинання енергії, розподіл температур 
і швидкість охолодження; механічна – формування залишкових напружень і деформацій; мікроструктурна – ево-
люцію фазового складу, розміру зерен та текстури. Такі моделі дають змогу оцінювати чутливість якості виробів 
до зміни параметрів друку ще до проведення експериментів.

У низці робіт [7, 11] цифровий двійник використано для оптимізації орієнтації деталі на платформі, конфі-
гурації системи підтримок і стратегії сканування з метою мінімізації деформацій та концентрацій напружень. 
Для задачі забезпечення якості важливо, що цифровий двійник дозволяє виконувати багатоваріантні розрахунки, 
визначати зони потенційних перегрівів, накопичення напружень та зниженої щільності, а також прогнозувати 
мікроструктурні особливості. Це створює передумови для формування «віртуального процесного вікна», у межах 
якого ймовірність виникнення критичних дефектів є мінімальною.

Поєднання цифрового двійника з методами машинного навчання реалізують у вигляді гібридних моделей. 
У роботах [7, 12] результати чисельного моделювання використовують як джерело синтетичних даних для 
навчання нейронних мереж, що надалі застосовуються для швидкого прогнозування температурних полів, напру-
жень або показників якості в режимі, наближеному до реального часу. В інших підходах ML-моделі використову-
ють для апроксимації розв’язку складних фізичних задач, зменшуючи обчислювальні витрати класичних методів 
[11]. У будь-якому випадку метою є створення інструмента, який поєднує фізичну обґрунтованість цифрового 
двійника та обчислювальну ефективність моделей глибокого навчання.

Наступний важливий блок стосується ролі мікроструктурного аналізу та фрактографії в системі інтелекту-
ального контролю якості. Металографічні дослідження, рентгенівська комп’ютерна томографія, сканувальна 
електронна мікроскопія та аналіз зламів дають змогу безпосередньо спостерігати розподіл пор, структуру зерен, 
наявність мікротріщин та вторинних фаз [9, 10]. У роботах [9, 10] показано, що суміщення карт пористості з фрак-
тографічним аналізом дозволяє встановити, які саме дефекти є критичними для втомної міцності, а які мають 
другорядний вплив. Для інтелектуальної системи ці дані виконують роль еталонної інформації (ground truth), 
необхідної для навчання й валідації моделей, що прогнозують структуру та властивості виробів.

У промислових умовах обсяг мікроструктурного аналізу, як правило, обмежений через високу вартість та 
тривалість досліджень. Тому особливого значення набувають методи transfer learning та domain adaptation, які 
дозволяють переносити знання, отримані на відносно невеликій кількості детально вивчених зразків, на ширший 
спектр деталей, для яких доступні переважно дані in-situ моніторингу [3, 6]. Таким чином, традиційні матеріалоз-
навчі методи не витісняються інтелектуальними підходами, а інтегруються з ними в єдиний контур.

З урахуванням наведених підходів доцільно запропонувати інтегровану архітектуру інтелектуальної системи 
визначення характеристик якості металевих виробів, що охоплює всі етапи життєвого циклу адитивного виробу – 
від аналізу сировини до постпроцесної валідації. Узагальнену структурну схему такої системи наведено на рис. 5. 
У ній виділено кілька взаємопов’язаних модулів, між якими організовано обмін даними й результатами прогнозів.

 

 Рис. 3. Структурна схема інтегрованої інтелектуальної системи контролю якості

Модуль аналізу сировини приймає зображення порошку, результати хімічного аналізу та історичні дані 
використання партій. На основі алгоритмів комп’ютерного зору та моделей машинного навчання він оцінює 
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морфологію частинок, виявляє деформовані й агломеровані об’єкти, формує інтегральні показники придатності 
порошкової суміші та рекомендації щодо змішування або відбракування [1, 3, 6]. Тим самим на вході технологіч-
ного ланцюга зменшується ймовірність потрапляння сировини, що з високою ймовірністю призведе до утворення 
дефектних виробів.

Модуль планування процесу та цифрового моделювання відповідає за вибір стратегії сканування, орієнтації 
деталі на платформі, конфігурації підтримок і основних параметрів друку. Він взаємодіє з цифровим двійником, 
який виконує багатоваріантні розрахунки температурних полів, напружень та деформацій, оцінює ризики пере-
грівів, надмірних деформацій і зон потенційної пористості [7, 11–13]. Результати моделювання використовуються 
як вхідні дані для уточнення параметрів процесу й формування початкового «плану якості» для конкретної деталі.

Модуль in-situ моніторингу та первинної аналітики збирає дані з високошвидкісних оптичних і тепловізій-
них камер, фотодіодів та, залежно від конфігурації устаткування, акустичних сенсорів [3, 4, 7]. На цьому рівні 
виконується попередня обробка сигналів (фільтрація, нормалізація, виділення базових ознак) та передавання їх 
до моделей глибокого навчання, які класифікують режими плавлення, виявляють аномалії melt-pool і формують 
локальні карти ризику дефектів по шарах.

Модуль прогнозу дефектів і оцінки властивостей об’єднує дані in-situ моніторингу з результатами цифро-
вого моделювання. Тут реалізуються моделі, що за картами температури, історією потужності та швидкості 
сканування, а також ознаками, отриманими з цифрового двійника, прогнозують пористість, розподіл дефектів, 
локальну міцність і залишкові напруження [5, 6, 8, 15]. Формально задача прогнозування пористості розгляда-
ється як побудова регресійної моделі

де Π^ – прогнозована сумарна пористість або її локальне значення в елементі об’єму, x – вектор вхідних ознак 
(лінійна щільність енергії EL​, товщина шару, параметри стратегії сканування, індекс якості порошку Qpow, ознаки 
з термограм та сигналів фотодіода), θ – параметри моделі (ваги нейронної мережі). Навчання моделі виконується 
шляхом мінімізації середньоквадратичної похибки

де Πi​ – експериментально виміряна пористість для i-го зразка, Π^i=fθ(xi) – відповідне прогнозне значення [5–8]. 
Зменшення функції втрат на етапі навчання прямо пов’язане з підвищенням точності оцінювання якості в екс-
плуатаційних режимах.

На виході формується інтегральна «карта якості» виробу, яка може використовуватися як для оперативного 
керування, так і для подальшої віртуальної сертифікації.

Модуль прийняття рішень і адаптивного керування порівнює прогнозовані показники якості з допустимими 
нормами для конкретного типу деталей. У разі виявлення зон із підвищеним ризиком дефектів система може 
автоматично скоригувати потужність лазера, швидкість сканування, локально змінити траєкторію або, за потреби, 
ініціювати перерозподіл завдань між установками [3, 7]. У перспективі такий модуль може взаємодіяти із систе-
мами більш високого рівня – планування виробництва й управління ресурсами – пропонуючи зміни в технології 
або переналаштування лінії.

Модуль постпроцесної валідації включає мікроструктурний аналіз, рентгенівську комп’ютерну томографію 
та механічні випробування вибіркових зразків. Його завдання – перевірити коректність прогнозів, виявити систе-
матичні відхилення та надати дані для донавчання моделей. Результати цього модуля повертаються в базу знань, 
коригують параметри цифрового двійника та ваги моделей машинного навчання, забезпечуючи поступове підви-
щення точності прогнозів і стійкості системи до нових типів виробів і матеріалів [3, 7, 15].

Таким чином, запропонована структура інтегрованої інтелектуальної системи дозволяє об’єднати в єдиному 
інформаційному просторі дані про порошок, параметри процесу, результати in-situ моніторингу, моделювання та 
постпроцесні вимірювання. Це створює основу для побудови самонавчальних адитивних виробничих комплек-
сів, у яких рішення щодо забезпечення якості приймаються на основі поєднання фізично обґрунтованих моделей 
і інтелектуального аналізу даних.

Висновки
На основі аналізу сучасних публікацій сформовано цілісне уявлення про інтелектуальні технології визначення 

характеристик якості металевих виробів, виготовлених методами пошарового утворення. Показано, що застосу-
вання машинного навчання та комп’ютерного зору на етапах аналізу порошку й in-situ моніторингу melt-pool дозво-
ляє автоматизувати виявлення аномалій процесу та оцінювати ризики формування дефектів. Глибокі нейронні 
мережі, що працюють із термограмами та томографічними даними, забезпечують прогноз пористості й струк-
турних аномалій з точністю, достатньою для практичного використання. Цифрові двійники адитивних процесів 
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створюють можливість виконувати багатоваріантний аналіз і оптимізацію параметрів друку до початку експери-
ментів, а їх інтеграція з ML-моделями формує основу замкненого контуру керування якістю. Мікроструктурний 
аналіз і фрактографія залишаються невід’ємними для навчання та валідації моделей, але можуть бути значно 
ефективніше використані в рамках запропонованої інтегрованої архітектури. Запропонована модель інтелекту-
альної системи визначення характеристик якості охоплює всі етапи – від сировини до постпроцесної обробки – 
й дозволяє розглядати металеве адитивне виробництво як елемент кіберфізичної виробничої системи Індустрії 
4.0. Подальші дослідження доцільно спрямувати на формування відкритих датасетів, стандартизацію метрик 
якості та розробку методів пояснюваного машинного навчання для підвищення довіри до інтелектуальних систем 
у промислових застосуваннях.
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