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SOFTWARE ANALYSIS OF RADIATION AIR POLLUTION STREAMING DATA

In today’s world, attention to environmental protection and sustainable development is increasing. Natural 
resources are limited, so it is important to take measures to control and preserve the ecological state of the 
environment. One of the effective tools for this is environmental monitoring systems that are able to collect and 
process streaming data. Streams come in real time from various sensors measuring environmental parameters such 
as air quality, noise level, water level, pollutant emissions and many others. Analysis of data from systems for 
monitoring environmental indicators is an important tool for monitoring and improving the state of the environment, 
allows for more effective management of natural resources, reduces the negative impact of human activity on the 
environment and promotes sustainable development. One of the main advantages of streaming data processing 
is the ability to analyze and respond to changes in real time. This allows to promptly detect dangers, deviations 
from standards, emergency situations or other problems arising in the environment and immediately take measures 
to eliminate them. The processing of streaming data allows analyzing trends and predicting possible risks and 
problems in the environment. This allows to take precautionary measures and develop strategies to preserve the 
ecological state. Data obtained from monitoring systems can serve as a basis for the development of policies and 
regulatory standards in the field of environmental protection. 

The article describes software methods for analyzing streaming data, in particular, for analyzing radiation  air 
pollution. Open data for indicators of radiation air pollution in the Kyiv city were analyzed and data visualization was 
carried out using analytical tools of the Python programming language. A correlation was found between radiation 
indicators at different times of the day, the time periods of emergency shutdowns of the sensor were analyzed. The Google 
Colab cloud environment was used for data analysis. The technical characteristics of the monitoring system of radiation 
air pollution indicators in the Kyiv city from open data sources of the ThingSpeak platform are described. 

Key words: software methods, streaming data, Python, air pollution monitoring, radioactive particle sensor, Thing-
Speak, Internet of Things, ESP12.OLED.
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ПРОГРАМНИЙ АНАЛІЗ ПОТОКОВИХ ДАНИХ РАДІАЦІЙНОГО ЗАБРУДНЕННЯ ПОВІТРЯ

У сучасному світі збільшується увага до питань охорони навколишнього середовища та сталого розвитку. 
Природні ресурси обмежені, тому важливо вживати заходів для контролю і збереження стану довкілля. 
Одним із ефективних інструментів для цього є програмні системи моніторингу показників навколишнього 
середовища, які здатні збирати та обробляти потокові дані. Потокові дані надходять у режимі реального 
часу з різних датчиків, що вимірюють параметри середовища, такі як якість повітря, рівень шуму, рівень 
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води, викиди забруднюючих речовин і багато інших. Аналіз даних систем моніторингу показників повітря 
є важливим інструментом для контролю та  покращення стану навколишнього середовища, дозволяє 
забезпечити більш ефективне управління природними ресурсами, зменшити негативний вплив людської 
діяльності на довкілля та сприяти сталому розвитку. Однією з основних переваг обробки потокових даних 
є здатність до аналізу і реагування на зміни в реальному часі. Це дозволяє оперативно виявляти небезпеки, 
відхилення від стандартів, аварійні ситуації або інші проблеми, що виникають у навколишньому середовищі 
та негайно приймати заходи для їх усунення. Обробка потокових даних дозволяє аналізувати тенденції та 
прогнозувати можливі ризики та проблеми в навколишньому середовищі. Це дозволяє приймати запобіжні 
заходи та розробляти стратегії для збереження екологічного стану. Дані, отримані з моніторингових 
систем, можуть слугувати підґрунтям для розробки політик та регулюючих стандартів у сфері охорони 
навколишнього середовища. 

У статті описано програмні методи аналізу потокових даних, зокрема, для аналізу радіаційного забруднення 
повітря. Проаналізовано відкриті дані показників радіаційного забруднення повітря у м. Києві та здійснено 
візуалізацію даних за допомогою аналітичних інструментів мови програмування Python. Знайдено кореляцію між 
показниками радіаційного випромінювання в різний час доби, проаналізовано періоди часу аварійних відключень 
датчика. Для аналізу даних використано хмарне середовище Google Colab. Описано технічні характеристики 
моніторингової системи показників радіаційного забрудненння повітря у м. Київ з відкритих джерел даних 
платформи ThingSpeak.

Ключові слова: програмні методи, потокові дані, Python, моніторинг стану радіаційного забруднення 
повітря, датчик радіоактивних частинок, ThingSpeak, Інтернет речей, ESP12.OLED.

Problem statement
The importance of monitoring air quality from sensors is that air, as one of the main components of the environment, 

has a direct impact on human health, the ecosystem and the overall quality of life. Because air is a mixture of gases, 
aerosols, and other harmful substances, its quality can vary greatly depending on various factors, including industry, 
transportation, energy, and other sources of pollution. The air quality monitoring is necessary for рrotection of public 
health. Poor air quality can lead to the development of various diseases of the respiratory system, cardiovascular diseases 
and other health problems. Monitoring allows to detect high levels of harmful substances, such as soot, nitrogen oxides, 
hydrogen sulfide, and others, and take the necessary measures to reduce their concentration and protect public health. 
Air quality monitoring helps assess the environmental impact of various sources of pollution such as industrial plants, 
transportation systems, energy, etc. This provides a basis for making decisions to improve efficiency, eradicate hazardous 
sources of pollution and promote sustainable development.

Related research
Researchers are constantly working on developing and improving sensor technologies used in air quality monitoring 

[1]. Studies focus on enhancing the accuracy, precision, and reliability of sensors to ensure the collection of high-quality 
data. This involves advancements in sensor calibration, data validation techniques, and the evaluation of sensor perfor-
mance in different environmental conditions [2]. Researchers use monitoring data to create detailed air pollution maps and 
models. These maps provide spatial representations of air quality, identifying hotspots of pollution and understanding pol-
lutant dispersion patterns [3]. The research involves the integration of monitoring data with geographical information sys-
tems (GIS) and the development of predictive models to estimate pollution levels in areas without monitoring stations [4].

Numerous studies investigate the health effects of air pollution using data from monitoring systems [5]. Researchers 
analyze the relationship between pollutant concentrations and adverse health outcomes such as respiratory diseases, car-
diovascular issues, and even mortality rates. These studies provide valuable insights into the impacts of air pollution on 
public health and support the development of policies and regulations to mitigate these effects [6].

Monitoring systems help in identifying pollution sources and assessing their contributions to air pollution. Researchers 
employ advanced data analysis techniques, such as source apportionment models, to identify pollution sources such as 
industries, transportation, and biomass burning. This knowledge aids in designing targeted emission control strategies and 
implementing effective pollution reduction measures [7]. 

Citizen science initiatives involve the active participation of communities in monitoring air quality. Researchers 
explore the role of citizen scientists in data collection, validation, and interpretation. They study the effectiveness of com-
munity-based monitoring networks and assess the impact of community engagement on raising awareness, influencing 
policy decisions, and promoting behavioral changes to improve air quality [8].

The main goal of the article is streaming data software analysis of the air radiation indicators from open-source 
monitoring system. 

Existing software solutions for sensor data analysis
ThingSpeak is an open-source Internet of Things (IoT) platform and cloud service that allows users to collect, analyze, 

and visualize sensor data from connected devices. It provides a simple and easy-to-use interface for managing IoT data 
and creating applications based on that data (Fig. 1).



ВІСНИК ХНТУ № 2(85), 2023 р.

189

                   ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ

 
Fig. 1. ThingSpeak IoT platform and open data channels for research

The IoT device in Fig. 1 is a GGreg20_V3 radioactive particle detector with an SBM-20 Geiger tube. Description 
of the data source: the GGreg20_V3 radioactive particle detector is an electronic sensor module for building a personal 
Geiger counter and determining the level of ionizing radiation. This IoT data source on thingspeak.com provides the fol-
lowing metrics measured by its sensor in real time: ggreg20_v3_cpm, ggreg20_v3_usvperh, and ggreg20_v3_dose_usv 
(Fig. 2). 

 

Fig. 2. Graphs of GGreg20_V sensor indicator values 

ThingSpeak enables users to collect data from various sources, such as sensors, devices, and IoT platforms. It supports 
a wide range of communication protocols, including HTTP, MQTT, and TCP/IP, making it compatible with a variety of 
devices and technologies. The core concept in ThingSpeak is a «channel.» A channel represents a stream of data from a 
specific source or device. Users can create multiple channels to organize and manage their data effectively. 

ThingSpeak provides cloud-based storage for collected sensor data. It offers a time-series database that can handle 
large volumes of data and supports efficient retrieval and analysis of historical data. ThingSpeak offers built-in analytics 
capabilities, allowing users to perform basic mathematical operations, filtering, and visualization on the collected data. It 
provides functions to calculate averages, maximums, minimums, and other statistical measures. 

The platform also includes built-in charting tools for creating real-time graphs and visualizing data trends. ThingSpeak 
allows users to define triggers and reactions based on specified conditions. Triggers can be set to activate when certain data 
thresholds are reached, and reactions can be defined to perform actions such as sending notifications or triggering external 
processes. ThingSpeak integrates with various IoT platforms, services, and hardware devices. It supports integration with 
MATLAB for advanced data analysis and modeling. Additionally, it provides APIs and webhooks for easy integration 
with other applications and services. ThingSpeak is open-source, which means that its source code is freely available for 
modification and customization. It has an active user community that shares code, examples, and offers support to users.

There are several existing software solutions for sensor data analysis that can be considered as analogues to 
Thingspeak. InfluxDB is a time-series database specifically designed for handling and analyzing sensor data. It provides 
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high-performance storage and retrieval of time-stamped data, along with built-in querying capabilities. InfluxDB also 
offers integration with visualization tools like Grafana for data visualization and monitoring. Grafana is an open-
source analytics and visualization platform that can be used with various data sources, including sensor data stored in 
databases like InfluxDB. It provides flexible and interactive dashboards to visualize sensor data in real-time, perform data 
exploration, and create custom analytics and alerts. AWS IoT Analytics is a managed service provided by Amazon Web 
Services (AWS) that enables the collection, processing, and analysis of sensor data at scale. It offers features such as data 
ingestion, data transformation, data storage, and advanced analytics capabilities to derive insights from sensor data. AWS 
IoT Analytics integrates with other AWS services for seamless data integration and further analysis. Microsoft Azure IoT 
Hub is a cloud-based platform that allows for the ingestion and management of sensor data from connected devices. It 
provides capabilities for data processing, storage, and analysis, as well as integration with other Azure services such as 
Azure Stream Analytics and Azure Machine Learning for advanced analytics and predictive modeling.

Research results
We use of Python programming language technologies to analyze streaming data from online platforms to which data 

from sensors are sent. First, it was necessary to choose the nearest source of IoT data, in order to subsequently analyze 
the data from the selected source using the Python language. For this, the site https://thingspeak.com/channels/public was 
used, where we can sort public IoT data sources by tag. Since the place of residence is Kyiv city, the IoT data sources were 
filtered according to the “kyiv” tag. Оnly two IoT data sources were found for the “kyiv” tag, namely: a data source named 
“ggreg20_v3_kyiv_live” with a unique ID of 1749073, and a data source named “Weather” with a unique ID of 391019 
(Fig. 1). Since the data source named “ggreg20_v3_kyiv_live” with the unique identifier 1749073 contained detailed 
information about this IoT device and its structure in the description, it was decided to choose it for further research. 
Because another data source named “Weather” with a unique identifier of 391019 did not provide a description of IoT 
device or a description of the structure of the sensor on the ThingSpeak platform. 

So, we describe the selected IoT data source with the name “ggreg20_v3_kyiv_live”. The IoT data source named 
“ggreg20_v3_kyiv_live” with unique ID 1749073 uses the GGreg20_V3 radioactive particle detector with SBM-20 
Geiger tube as an IoT device. Description of the data source: the GGreg20_V3 radioactive particle detector is an elec-
tronic sensor module for building a personal Geiger counter and determining the level of ionizing radiation. This IoT 
data source on thingspeak.com provides the following metrics measured by its sensor in real time: ggreg20_v3_cpm, 
ggreg20_v3_usvperh, and ggreg20_v3_dose_usv:

• ggreg20_v3_cpm is the number of pulses per minute. The name indicates ggreg20_v3, this is the actual name of the 
module, and cpm is deciphered as counts per minute, that is, it is the number of pulses per minute. This indicator char-
acterizes the current power of ionizing radiation per minute cycle. The greater the number of pulses, the greater the level 
of radiation. From this value, we can get the dose of radioactive radiation in μSv/h by using the following formula: cpm 
* 0.0092.

• ggreg20_v3_usvperh is the dose rate of ionizing radiation, or in other words, the radiation intensity, which is given 
in the dimension of μSv/h (microsievert per hour). The name indicates ggreg20_v3, this is the actual name of the module, 
and usvperh stands for uSv per hour. This indicator allows to assess the radiation situation at the current moment. With a 
normal radiation background, this value should be less than 50 μSv/h.

• ggreg20_v3_dose_usv is the equivalent dose of ionizing radiation accumulated since the IoT device was started. This 
indicator is given in μSv (microsievert). This indicator always increases, as it shows the received dose of ionizing radi-
ation from the moment the device is started. That is, the longer the device works, the higher the received radiation dose 
becomes. So, the above-described IoT data source allows to obtain in real time the ionizing radiation dose rate in the Kyiv 
city, as well as the accumulated radiation dose at the current moment, starting from the start of the device. To find out the 
structure of the IoT device itself and its sensor, we look at the tags that were added on the site for the selected data source. 
Among them we have: “ggreg20_v3”, “Iot-devices”, “esp12.oled”, “esp8266”, “Kyiv”, “Ukraine”, “radiation”, “sbm20”, 
“geiger”. The sensor is based on the MCU microcontroller “ESP12.OLED” because it has “esp12.oled” in the tags. The 
ESP12.OLED board is a ready-to-program universal ESP8266 MCU controller with a graphic display and interfaces for 
connecting digital and analog sensors and actuators (Fig. 3). It is used as a central module of IoT devices. This device 
is based on the NodeMCU ESP8266 board, which is a microcontroller manufactured by Espressif with a built-in Wi-Fi 
interface. The ESP12.OLED controller includes: GPIO connectors; MCU controller ESP8266-12; built-in monochrome 
OLED display SSD1306 128×64 0.96″ with I2C interface; Flash button (D3/GPIO0/P18); Rst button; RGB LED; UART 
interface for testing and programming. 

This IoT device also uses “GGreg20_V3 Radioactive Particle Detector with SBM-20 Geiger tube”, which is a sensor 
that measures radioactive radiation (Fig. 4). 

The GGreg20_V3 radioactive particle detector is an electronic sensor module for building a personal Geiger counter 
and determining the level of ionizing radiation. For this, the sensor device provides an output, which can be used to count 
pulses on the controller. The radiation level can be indicated by light and sound signals. This module can be used to deter-
mine the power of ionizing radiation both indoors and outdoors, both in a handheld/pocket design and in stationary mode. 
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This sensor emits pulses at the GPIO output, which the microcontroller can count, and thus the power of ionizing radiation 
can be determined by the number of pulses per unit of time. The Geiger tube SBM-20, which can be easily replaced, fixes 
the ionizing radiation in this device.

Before using the data for analysis, we import the necessary Python libraries for working with the data:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
%matplotlib inline

We download a dataset of indicators that were recorded by the ionizing radiation sensor ggreg20_v3_kyiv_live. Since 
the file was provided by the site in CSV format, the appropriate function was used to load it into the dataframe:
# Import the feed.csv - exported recent data from IoT sensor ggreg20_v3_kyiv_live
# web page of the sensor: https://thingspeak.com/channels/1749073
radiationSensorDf = pd.read_csv(‘/content/drive/MyDrive/data_colab/feed.csv’)

We check the correctness of the import by displaying the first five records in the dataframe: 
radiationSensorDf.head()
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Figure. 3. Top and bottom, scheme of the ESP12.OLED board 
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Fig. 3. Top and bottom, scheme of the ESP12.OLED board

 
Figure. 4. The view and the scheme of the GGreg20_V3 detector 

The GGreg20_V3 radioactive particle detector is an electronic sensor 

module for building a personal Geiger counter and determining the level of 

ionizing radiation. For this, the sensor device provides an output, which can be 

used to count pulses on the controller. The radiation level can be indicated by light 
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Before using the data for analysis, we import the necessary Python libraries 

for working with the data: 
import pandas as pd 
import matplotlib.pyplot as plt 
import matplotlib.dates as mdates 

%matplotlib inline 

We download a dataset of indicators that were recorded by the ionizing 

radiation sensor ggreg20_v3_kyiv_live. Since the file was provided by the site in 

CSV format, the appropriate function was used to load it into the dataframe: 
# Import the feed.csv - exported recent data from IoT sensor ggreg20_v3_kyiv_live 
# web page of the sensor: https://thingspeak.com/channels/1749073 

radiationSensorDf = pd.read_csv('/content/drive/MyDrive/data_colab/feed.csv') 

Fig. 4. The view and the scheme of the GGreg20_V3 detector
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As we can see, the content of the CSV file was correctly loaded into the dataframe. The table has five columns: 
created_at, entry_id, field1, field2, field3. The column created_at is responsible for the date and time of taking the 
indicator, entry_id is the unique identifier of the indicator measurement. 

We rename the field1 column to cpm, because it is the number of pulses per minute (cpm stands for counts per 
minute), rename the field2 column to usv_per_h, because it is the dose of ionizing radiation (irradiation intensity), which 
is given in the dimension of μSv/h (microsievert per hour). Also we rename the column field3 to dose_usv, because it 
is the equivalent dose of ionizing radiation that has accumulated since the start of the IoT device, which is given in the 
dimension of microsievert:
columnNamesMapper = {
    “field1”: “cpm”,
    “field2”: “usv_per_h”,
    “field3”: “dose_usv”
}
radiationSensorDf.rename(columns=columnNamesMapper,  
inplace=True)radiationSensorDf.head()

 

We check the data types of each column in the dataset and make sure that there are no missing values in the rows:
radiationSensorDf.info()
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 100 entries, 0 to 99
Data columns (total 5 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   created_at  100 non-null    object 
 1   entry_id    100 non-null    int64  
 2   cpm         100 non-null    int64  
 3   usv_per_h   100 non-null    float64
 4   dose_usv    100 non-null    float64
dtypes: float64(2), int64(2), object(1)
memory usage: 4.0+ KB

Therefore, there are no missing values in the table. Therefore, it is not necessary to filter the dataframe to exclude 
empty lines. As we can see, the data type for the created_at column is object. Since this column shows the date and time of 
fixing the sensor value, we convert all the values of this column to the datetime type by applying the appropriate function:
radiationSensorDf[‘created_at’] = pd.to_datetime(radiationSensorDf[‘created_at’]).
dt.tz_localize(None)
radiationSensorDf.head()

 

Make sure that the created_at column now has the correct data type:
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radiationSensorDf.info()
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 100 entries, 0 to 99
Data columns (total 5 columns):
 #   Column      Non-Null Count  Dtype         
---  ------      --------------  -----         
 0   created_at  100 non-null    datetime64[ns]
 1   entry_id    100 non-null    int64         
 2   cpm         100 non-null    int64         
 3   usv_per_h   100 non-null    float64       
 4   dose_usv    100 non-null    float64       
dtypes: datetime64[ns](1), float64(2), int64(2)
memory usage: 4.0 KB

We also analyze basic statistical information: minimum, maximum, average value, etc.: radiationSensorDf.
describe()

 

So, we can see that the maximum value of the power of ionizing radiation is 0.197 μSv/h, and the minimum is  
0.108 μSv/h. The average value is 0.155 μSv/h. 

We can see the same information about other columns. In addition, in the above statistical information, we can see 
the value of the standard deviation, percentiles of the level of 25%, 50%, 75%. We visualize sensor data using Python 
capabilities. To do this, we plot the dependence of all three measured values (cpm, usv_per_h, dose_usv) on the date and 
time of their fixation. We create a separate function that will create a graph with the appropriate captions:
def plot_sensor_data(column_name: str, column_label: str, color: str):
  fig, ax = plt.subplots(figsize=(15, 5))
  ax.plot(radiationSensorDf[“created_at”], radiationSensorDf[column_name],  
f’{color}o-’)
  plt.xticks(rotation=90)
  ax.xaxis.set_major_locator(mdates.HourLocator())
  ax.xaxis.set_minor_locator(mdates.MinuteLocator(interval=15))
  ax.xaxis.set_major_formatter(mdates.DateFormatter(‘%d.%m %H:%M’))
  plt.ylabel(column_label, fontsize=15)
  plt.xlabel(‘Timestamp’, fontsize=15)
  plt.show()

We have the following three graphs, which visualize the dependence of the number of pulses per minute, the power of 
the dose of ionizing radiation (μSv/h), the equivalent dose of ionizing radiation (μSv) on time, respectively (Fig. 5, 6, 7):
plot_sensor_data(“cpm”, ‘Count of impulses per minute’, ‘g’)
plot_sensor_data(“usv_per_h”, ‘Dose rate, uSv/h’, ‘b’)
plot_sensor_data(“dose_usv”, ‘Equivalent dose, uSv’, ‘r’)

As we can see in the graphs above, there were four periods in which there was no electricity, as a result of which the 
sensor could not record the relevant indicators during this time. Since the equivalent dose of ionizing radiation shows 
the accumulated radiation from the start of the device’s operation, after the appearance of electricity, the corresponding 
graph starts from the zero mark and increases approximately uniformly until the next shutdown. We find the correlation 
between the two selected parameters for the time period from 12/18/22 01:00 to 12/19/22 01:00. To perform this task, the 
same IPython notebook was also used in the Google Colab environment. To build a heat map, import the Seaborn library:
import seaborn as sns
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Before looking for a correlation between the parameters, first we remove the redundant characteristics. Namely, we 
will delete the entry_id column, since it simply displays the serial number of the measurement and has no value:
# The `entry_id` column has no relevance at this time, so it can be dropped.
radiationSensorDfModified = radiationSensorDf.drop(‘entry_id’, axis=1)
radiationSensorDfModified.head()

We also add a new parameter to the dataframe. Since the dose of ionizing radiation at night can be higher or lower than 
the same value during the day, we will add a new column is_night to the dataframe. It will contain Boolean values. If the 
hour value from created_at for a measurement is greater than 15 or less than 8, then this measurement will have True in 
the is_night column and False in other cases:
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radiationSensorDfModified[“is_night”] = radiationSensorDfModified.apply(lambda row: 
row.created_at.time().hour >= 16 or row.created_at.time().hour <= 7, axis=1)
radiationSensorDfModified.head(n=25)

We build a correlation matrix for the parameters: cpm, usv_per_h, dose_usv, is_night (Fig. 8). To determine the 
correlation value, we will use the Pearson method:
radiationSensorModifiedCorr = radiationSensorDfModified.corr(method=’pearson’)
radiationSensorModifiedCorr
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Conclusions and future work
So, it can be seen that two parameters, namely: cpm and usv_per_h correlate very well, unlike the others. Since the 

correlation value of these two variables is 0.994, this is a very strong positive correlation. That is, with an increase in the 
number of pulses per minute, the power of the ionizing radiation dose also increases. This is a logical consequence, since 
the dose rate of ionizing radiation is calculated based on the number of pulses per minute by multiplying this value by a 
constant factor. We also conclude that the parameter is_night is not correlated with usv_per_h, because the correlation 
value is –0.004, that is, there is no dependence between these variables, so we can conclude that the initial assumption 
was wrong. Other parameters are also not correlated with each other, since other correlation indicators are also close to 
zero. This research is limited by the number of sensors of the monitoring systems in the Kyiv city. During military attacks 
on the territory of Ukraine, there are many threats of environmental pollution, especially air pollution, which affects the 
health and life expectancy of the Ukrainian population. The future development of this research is the use of complex 
sensors of air quality, namely gas concentrations, particle size to identify relationships between indicators.
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