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THE SOFTWARE DEVELOPMENT LIFECYCLE OF CYBER-PHYSICAL SYSTEMS

This work provides a comprehensive overview of the Sofiware Development Lifecycle (SDLC) of Cyber-Physical
Systems (CPS). The successful development of CPS heavily relies on implementing a comprehensive SDLC model that
integrates various established methodologies and techniques. This model includes Model in the Loop (MIL), Software in
the Loop (SIL), Processor in the Loop (PIL), and Hardware in the Loop (HIL), complemented by N-version Programming
and formal verification and validation, including compile-time verification. By incorporating these elements, developers
gain a structured framework to optimize workflows, ensure process consistency, and manage risks associated with system
complexity. Including compile-time verification enables the early detection and resolution of potential issues, further
enhancing CPS solution reliability and robustness. Additionally, N-version programming allows developers to improve
software quality and reliability while efficiently managing resources. Moreover, integrating Field-Programmable Gate
Arrays (FPGAs) into CPS architectures presents a scalable and adaptable solution to address performance challenges
encountered by embedded processors. FPGAs offer parallel processing capabilities and hardware acceleration features,
enabling CPS developers to enhance system performance, responsiveness, and reliability. This capability proves
invaluable in meeting the stringent requirements of critical applications across diverse domains, including aerospace,
defense, healthcare, and industrial automation. Adopting a comprehensive SDLC model facilitates the delivery of CPS
solutions that meet stringent quality standards, tackle evolving technological challenges, and fulfill diverse stakeholder
requirements. By catalyzing innovation and progress, this approach empowers CPS developers to confidently navigate
technological complexities and deliver solutions that have a meaningful impact on society and the world. Through
continuous refinement and advancement, CPS technology continues to push the boundaries of what is possible, driving

progress and shaping the future of interconnected systems and environments.
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JKUTTEBUM LIUKJI PO3POBJEHHSA KIBEP®I3UUHUX CUCTEM

YV oanuiii pobomi nadaecmocs oensid xomniekcHoi mooeni po3pobrenHs npoepamuo2o 3abesneuenns (I13) ons
Kibepghizuunux cucmem (K@C) orcummesozo yuxny (FKL]), wo éxirouae 6 cebe pisHOMAHimHi Memooonozii ma memoou:
Model in the Loop (MIL), Software in the Loop (SIL), Processor in the Loop (PIL), ma Hardware in the Loop (HIL),
oonosHeri N-6epCitinum npoepamyeaHHsIm, QopmMaibHol sepugikayicio ma sanioayiero, 6KIOYAIYU eepu@ikayio Ha
emani komninayii. Inmezpayis yux enemenmis y JKI| naoae po3pobruxam mosxicaugicmes onmumizysamu poboui npoyecu,
3abe3neuumu cmanicmv npoyecie ma YNpaeusimu pusuKamu, nOGSI3aHumu 3i CKAAOHicmio cucmemu. Bruiouenns
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sepupixayii Ha emani KoMRinAYii 0038014€ HA PAHHIX eMAanax SUABIAMU MA BUPIUYEAMU NOMEHYIUHI npooiemu, ujo
nokpawgye kopekmuicmo I13. N-eepciiine npocpamyeants 00360J4€ poO3POOHUKAM He MIiNbKU NOKpawyeamu aKicms ma
naoiunicmo [13 KOC, ane i epexkmusno suxkopucmosysamu pecypcu. lumeepayis enemenmis Field-Programmable Gate
Arrays (FPGAs) y apximexkmypy KOC pobums MONCIUBUM CIMEOPEHHS MACUMAOOBAHUX A A0ANMUGHUX DilleHb OJisl
NOOOAAHHS NPOONeM NPOOYKMUBHOCHI, 3 AKUMU CMUKAIOMbCS 80y008aHi npoyecopu. Bukopucmanus napanenvHozo
00poONeHHsT OaHUX Ma anapamuoeo NpuckopenHs 0o3eonse pospoorukam KOC noxkpawumu npooykmusenicmes ma
HAOitiHicMb cucmemu, Wo € HAO3GUYALIHO BANCTUBUM ) 3A0080EHHI GUMO2 00 KPUMUYHUX 3ACMOCY8AHbL Y DIZHUX
2any3ax, makux sk agiayis, 0bopona, 0xXopona 300po8's ma NPomucioea asmomamuszayis. Takum YUHOM, 6NPOBAOICEHHS
Komnaexcnoi modeni JKIL cmae Kkmouwosum wunHukoM y nokpawjenni npoepamnux piwens oasn K@C. 3anpononosani
PpiutenHs 8I0N08I0aromMy GUCOKUM CIAHOAPMAM SIKOCMI, eheKMUBHO SUPIULYIOMb PI3HOMAHIMHI MEXHON02IYHI 3A60AHHS
ma 3abe3neuyroms 3a00601€HHA PISHOMAHIMHUX Nomped Kopucmyeayis. 3asHauenuil nioxio UCmynac Kamanizamopom
ons iHHosayil ma npoepecy, naoarouu pospoonuxkam KOC enesnenicme y 30amuocmi no0onamu mexHoN02iuHi GUKIUKU
ma po3podbumu nPoSPamMHi piuleHHs, AKI Malomeb 3HAYHUL 6NJIUE HA CYCHiIbcmeo ma ceim y yiromy. L]a cmpamezis
00360/1€ PO3POOHUKAM GIOMIHHO OPIEHMYBAMUCS 8 CYYACHUX MEXHONO2IYHUX CKIAOHOWAX MA CMEopIoeamu npooyKmu,
Wo 6Ii0N0GIOAIOMb CYUACHUM BUMO2AM PUHKY MdA MAIOMb 3HAYHUL COYIATIbHUL GNIIUG.
Knwuoei cnosa: KOC, )KI1], FPGA, HIL, MIL, PIL, SDLC, SIL.

Formulation of the problem

Developing software for cyber-physical systems (CPS) [1] involves utilizing various concepts and models covering
various technologies and devices. The CPS has brought a new era of connected devices and systems with healthcare
and transportation applications. However, the reliability and security of these systems are critical concerns that must be
addressed to ensure their safe and effective operation [2].

To ensure the standardization of development processes and enhance the reliability of CPS, we introduce a compre-
hensive lifecycle model. This model integrates established methodologies like Model in the Loop (MIL) [3], Software
in the Loop (SIL) [3], Processor in the Loop (PIL) [4], and Hardware in the Loop (HIL) [5]. Additionally, it incorporates
formal verification and validation (FV&V) techniques [6]. This holistic approach aims to streamline development while
ensuring rigorous testing and validation at every stage of the CPS lifecycle.

This will contribute to achieving high quality and reliability metrics, critical components of Industry 5.0 [7]. However,
effectively implementing this model requires addressing issues related to integrating diverse technologies, optimal
resource utilization, and ensuring interaction between different stages of the lifecycle.

Analysis of recent research and publications

MIL is a development concept based on utilizing mathematical and software models of CPS at the customer require-
ments stage [3]. This approach integrates the model into a closed loop with real hardware and software. The MIL concept
is widely used in developing control systems in aviation, the automotive industry, space technology, and industrial auto-
mation. Its use allows for effective error detection and correction and increases the efficiency and reliability of embedded
systems. The result of work using the MIL methodology is a set of models describing various elements of CPS: sensors,
actuators, and the external environment (such as aircraft, automobiles, machines, etc.).

SIL is a development concept for embedded system software based on customer requirements [3; 5]. SIL is one of
the stages in the software development lifecycle and is based on using models. This concept allows for software testing
without the physical presence of CPS hardware, which helps reduce resource costs for development.

PIL is a development concept for future CPS software on an embedded processor based on customer requirements
[4]. This approach allows for identifying and correcting errors related to software interaction with a specific processor.

HIL is a development concept for future CPS software on embedded hardware based on customer requirements
[5]. This methodology allows for identifying and correcting errors related to the interaction of CPS hardware with its
processor.

The interrelation of these concepts, resulting in an adequate and correct CPS, is shown in Fig. 1.
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Fig. 1. CPS software development lifecycle

The development of CPS commences with defining requirements, drafting acceptance testing plans, and formulating
detailed requirement specifications, accompanied by models depicting CPS components such as sensors, actuators, and
the control entity. When constructing these models poses challenges, reverting to the customer's requirements is crucial.
Precise mathematical and software models are employed to develop CPS algorithmic frameworks according to the SIL
concept. Addressing any issues involves revisiting and refining the customer's requirements, creating new models, and
resuming SIL processes.

Subsequently, in alignment with the PIL paradigm, rigorous validation of software algorithm models occurs on the
embedded processor designated for the future CPS. Successful verification yields accurate software implementations
meeting customer requirements and executable on the embedded processor. If algorithmic functions falter, revisiting
customer requirements, refining or amending them, and resuming SIL processes are paramount.

Following the HIL principle, software functionality undergoes scrutiny within the CPS's hardware environment. If
verifying within this context proves challenging, refining requirements becomes necessary.

Enhancing the existing software development life cycle entails leveraging formal verification techniques rooted in
the physical dimension and orientation transformation checks. These methods ensure rigorous validation against physical
parameters, bolstering CPS functionalities' reliability and performance.

Formulation of the research purpose

This research aims to devise a cohesive methodology tailored to the software development lifecycle of CPS, a cor-
nerstone of the Industry 5.0 paradigm. Our principal aim is to augment the efficacy of established methodologies such as
MIL, SIL, PIL, and HIL, integrating them with advanced FV&V techniques based on a specialized C++ type library [8],
which implements the concept of the Hoare verifying compiler [9] and N-version programming to improve software reli-
ability, as well as FPGA implementation to enhance performance. The ultimate objective is to ensure that CPS software
achieves unparalleled quality and reliability, seamlessly meeting the demands of the contemporary environment.

Presentation of the main research material

As illustrated in Fig. 1, developing a comprehensive set of mathematical and software models becomes imperative

after formulating requirement specifications outlined in Fig. 2.
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Fig. 2. Lifecycle of Cyber-Physical System Models Development

Initially, mathematical models of CPS are iteratively developed by software requirements specification and utilizing
specialized tools such as Matlab /Simulink [10]. Based on these adequate mathematical models, their software imple-
mentations and stability and controllability verification plans are constructed. A specialized type library is employed to
enhance the quality of software models, supporting physical dimensions and spatial orientation of software variables
while providing additional checks during compilation and execution [11]. The software implementation of models forms
the basis for constructing autonomous software model test plans. Subsequent stages involve coding and autonomous test-
ing of software models. Following this, stability testing of models is conducted, and if necessary, we return to constructing
adequate mathematical models with possible refinement of requirements. Then, stable software models are tested for con-
trollability. If models fail to exhibit controllability, we must revisit requirement refinement. CPS's constructed adequate
software models are further utilized (Fig. 3).
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Fig. 3. Scheme of CPS Model Interaction Verification
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Test verification plans are formulated based on the requirement specifications. These plans are then loaded into a
testing environment, which interacts with models of telecommunication and telemetry algorithms. These algorithms fur-
ther interact with models of control algorithms, sensors, actuators, and the controlled object. Actuator models control the
object, while sensor models transmit information about the object's state to the control algorithms. Telecommunication
and telemetry algorithms generate telemetry data for testing purposes and real-time maintenance. Telecommunication
algorithms, based on Fourier & Chebyshev transform, are employed to reduce data volume [12; 13].

Control algorithms are developed based on customer requirements, and software models are created using a type
library [11], which enables formal verification of the software code during compilation and execution. Software models of
algorithms are developed for general-purpose computers. Autonomous testing is performed using tools such as CPPUnit
[14]. The next stage, corresponding to the SIL concept, involves verifying software models of control algorithms (see
Fig. 4).
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Fig. 4. Scheme for verifying software models of CPS algorithms

Dynamic testing is conducted based on test plans and allows for verifying the interaction of algorithms both among
themselves and with sensors and actuators.

CPS software can be used sequentially in multiple configurations in the corresponding configuration file to perform
various tasks in different hardware environments. According to the author's experiences, the flight software can include
such configurations as orbit insertion, separation, Earth, Sun, and Moon orientation, targeting a specific star, forming a
corrective impulse, stabilization, etc. Of course, over time, hardware may fail, but thanks to redundancy, the system can
reconfigure itself. Therefore, sensors and actuators should be duplicated, and their operational status constantly moni-
tored. A control object model allows for additional evaluation of the operation status of sensors and actuators by predicting
the system's state and comparing it with the actual state obtained from sensors. To verify the sequential operation of the
software in different configurations, the scheme depicted in Fig. 5 is used. The test plans define the set of configurations.
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Fig. 5. Scheme for verifying the consistency of CPS software configurations
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Each configuration defines the operating mode of the CPS software, corresponding to the current task of the CPS and
the state of the hardware. In case of successful verification, we obtain a set of verified control algorithms; otherwise, mod-
ifying the corresponding algorithms with inter-mode interfaces is necessary. Next, according to the PIL concept, verifying
the operation of the control program on the embedded processor is required (Fig. 6).
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Fig. 6. Scheme for verifying the control program of the CPS on the target processor

To verify the operation of the control program on the embedded processor, two computers are used: a general-purpose
computer running the test environment, algorithm models, devices, and the control object, and the embedded computer
of the CPS running the program implementation of algorithms. According to the configuration and the test plan, the
test environment configures the models on the general-purpose computer and the CPS program on the embedded com-
puter. Additionally, data from sensor models are fed into the input of the embedded computer. The results of the control
algorithms operating the actuators from the embedded computer are sent to the test environment of the general-purpose
computer. This allows for comparing the results of the general-purpose and embedded computers' operation and detecting
errors in the algorithm implementations. The verification results generate a test report.

Parallel development of multiple versions of software code is a beneficial practice that can significantly enhance
program reliability. By concurrently working on different codebase versions, developers can cross-verify each version,
thereby identifying and rectifying errors more effectively. This verification process leverages the assumption that errors
in each version occur randomly, allowing for comprehensive coverage in error detection.

To illustrate, consider having one version of the program with a reliability factor of X and a second version with a
reliability factor of Y. In this scenario, the overall reliability of the two programs, denoted as P, can be calculated using
the formula P=1— (1 — X) * (1 —Y). This formula accounts for the likelihood of errors in each version and computes the
combined reliability of the programs. Such a substantial enhancement in reliability is only achievable when the control
program is developed specifically for the target machine. In conclusion, parallel development fosters collaboration and
innovation and significantly improves program reliability. By harnessing the collective efforts of developers and system-
atically verifying multiple versions of the code, organizations can ensure the delivery of robust and dependable software
solutions [15].

In the subsequent phase (Fig. 7), the operational integrity of the CPS is assessed with actual devices, sensors, actua-
tors, and the embedded computer governed by the developed program. Following the test plans and configurations, the
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embedded computer is set up to execute designated tasks under predetermined conditions. In the final step, the developer
employs the acceptance test plan to verify that the CPS software aligns with user requirements.

| Test General Purpose Computer ;
! Report E
E Plans Environment Configurations :
: :
! 1]
Y H
CPS Embedded Computer !
Telecommunication & :
Sensors Telemetry Algorithm Actuators !
y Implementations . )

Y ¢ y

Actuator Controlling
Algorithm
Implementations

Sensor Information
Algorithm <>
Implementations

Controlling Algorithm
Implementations

3
Y

Fig. 7. Scheme of verification and validation of the CPS software

In critical CPS applications, the demands for processing power can often exceed the capabilities of traditional embed-
ded processors. This shortfall in performance can arise due to the complexity of algorithms, the need for real-time data
processing, or the sheer volume of computations required to maintain system responsiveness and reliability. In such
scenarios, Field-Programmable Gate Arrays (FPGAs) [15; 16] emerge as a powerful solution to augment the capabilities
of embedded processors. FPGAs offer the flexibility of hardware acceleration, enabling them to execute intensive tasks
with remarkable efficiency. Their parallel processing capabilities allow for the simultaneous execution of multiple tasks,
making them ideal for handling the high computational demands of critical CPS applications.

Moreover, FPGAs excel in real-time data processing thanks to their ability to process data at ultra-low latency. This
ensures that critical data is processed and acted upon promptly, which is essential for maintaining CPS systems' respon-
siveness and effectiveness in dynamic environments.

Additionally, FPGAs can execute complex control algorithms with precision and reliability. Whether regulating
autonomous systems, managing power distribution networks, or controlling robotic actuators, FPGAs provide the com-
putational horsepower to ensure the smooth and efficient operation of CPS applications. FPGA-based solutions imple-
mentation involves several steps:

1. System Design: Define CPS architecture, identify critical functions, and partition between software and FPGA-
based hardware.

2. FPGA Development: Develop and synthesize FPGA designs for hardware accelerators using HDLs like Verilog or VHDL.

3. Integration: Integrate FPGA-based accelerators into the CPS system, interfacing with software, sensors, actuators,
and other devices.

4. Testing and Verification: Perform rigorous testing and verification of FPGA-based accelerators for correctness,
reliability, and safety compliance.

5. Deployment and Maintenance: Deploy FPGA-based CPS software and provide ongoing maintenance and support
for reliability and performance.

FPGA implementation enhances CPS performance, reliability, and responsiveness for critical aerospace, defense,
healthcare, and industrial automation applications. Integrating FPGAs into CPS architectures offers a scalable and adapt-
able solution to address embedded processors' performance challenges. By leveraging FPGAs' parallel processing capa-
bilities and hardware acceleration features, CPS developers can enhance system performance, responsiveness, and relia-
bility, meeting critical applications' stringent requirements across various domains.

Conclusion

Implementing a comprehensive lifecycle model is vital for the success of the development of cyber-physical systems.
By integrating established methodologies such as Model in the Loop, Software in the Loop, Processor in the Loop, and
Hardware in the Loop, alongside N-version Programming and formal verification and validation techniques, along with
compile-time verification, this model offers a structured and efficient framework for CPS software development.
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This integrated approach empowers developers to optimize workflows, ensure consistency in development processes,
and mitigate risks associated with system complexity. With compile-time verification, developers can proactively identify
and address potential issues at an early stage of development, further enhancing the reliability and robustness of CPS
solutions. Moreover, by incorporating N-version programming, developers can proactively improve software quality and
reliability while minimizing resource usage for software development.

Incorporating FPGAs into CPS architectures provides a scalable and versatile solution to confront the performance
hurdles embedded processors encounter. Harnessing the parallel processing capabilities and hardware acceleration fea-
tures of FPGAs, CPS developers can bolster system performance, responsiveness, and reliability, meeting the rigorous
demands of critical applications across diverse domains.

Ultimately, adopting a comprehensive lifecycle model facilitates the delivery of CPS solutions that meet stringent quality
standards, address evolving technological challenges, and fulfill the diverse requirements of stakeholders. It serves as a cor-
nerstone for fostering innovation, driving progress, and realizing the full potential of Cyber-Physical Systems across various
domains. With this approach, CPS developers can confidently navigate the complexities of modern technology and deliver
solutions that have a meaningful impact on the world.
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