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DETERMINING OPTIMAL COMPRESSION ALGORITHM
FOR FILES OF DIFFERENT FORMATS

The aim of the article is to highlight possible areas of the use of compression algorithms in various fields. The article
investigates the efficiency of the compression of files of different formats and provides recommendations on the optimal
compression algorithms for specific scenarios.

The research was carried out empirically: compression algorithms were implemented at the software level, the
programs were used to compress files of various formats, the size of the resulting files was determined, and a comparison
of the efficiency of the methods was made.

Research results. The article presents a table of file sizes after compression using different compression algorithms,
calculates compression ratios for each case, determines the average compression ratios for each compression algorithm,
analyses the efficiency of compression algorithms, and identifies the optimal compression algorithms for files of different
formats.

The scientific novelty of this work is an integrated approach to comparing compression algorithms by compression
ratios on different file formats and the study of the combination of Huffman and LZ78 algorithms, which has not been
widely studied before. This allows us to gain a deeper understanding of the process of compressing files of different
formats and identify effective algorithms for specific data types. The analysis can contribute to the development and
improvement of file compression methods and have practical applications in various fields, such as data storage and
transmission, file compression, and improving the performance of information processing systems.

The practical significance of the work lies in its potential usefulness for various fields. It provides recommendations
and conclusions on the selection of efficient file compression algorithms for different file formats. This can have a positive
impact on data storage and transmission, data processing speed, software development, and multimedia data. Using
optimal compression algorithms helps reduce file size, saves resources, and improves user experience.
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BU3HAYEHHSA OIITUMAJIBHOI'O AJITOPUTMY CTUCHEHHS
JIJISI ®ATJIIIB PI3BHOT'O ®OPMATY

Memoro cmammi € GUCGIMAEHHA MONCTUBUX HANPIAMKIE BUKOPUCMANHA AI2OPUMMIE CIMUCHEHHS Y PI3HUX chepax.
Y emammi onucyemucs 0ocniosxcenns epexmuenocmi cmuchents aiinie pisno2o popmamy ma HAOAIOMbCA PEKOMEHOA-
Yii W 000 ONMUMATLHUX ANIOPUMMIE CIUCHEHHS 011 KOHKDEMHUX CYeHapiis.

Jlocnioscennss npoBoOUNUCA eMNIPUYHUM MEMOOOM. OYII0 HA NPOSPAMHOMY DIGHI peani3o8aHo an2opummy CHMUCHeH-
HSl, CMUCHYMO Daliiu, BUSHAYEHO POIMID OMPUMAHUX Qailiis i 3p001eH0 NOPIBHAHHSI WO000 eQeKMUSHOCME Memoois.

OcHosHI pe3ynbmamu 00CHIOJNCEHb. Y CIMAmMmi NPedcmasieHo mabauyio poamipie ailnié niciisi CMUCHeHHs 3a PI3HU-
MU AICOPUMMAMYU CIMUCHEHHS], NIOPAXOBAHO KOepIYIEHMU CMUCHEHHS OISl KOJICHO20 GUNAOKY, DVII0 GU3HAYEHO CepeoHi
Koe@iyieHmu CMUCHeHH s 071 KOXCHO20 AI20PUMMY CHIUCHEHHS, NPOBe0eHO AHANI3 eqheKMUBHOCHI ANeoPUmMMIE CHUCHEH-
HS Ma USHAYEHO ONMUMAIbHI Al2OpUMMU CIUCHEHHA 071a (atlnie pizHo2o ¢popmamy.

Hayxosa nosusna 0anoi pobomu nonseac y KOMHAEKCHOMY Ni0X00i 00 NOPIGHAHMS Al20PUMMIE CIUCHEHHS 3a Koei-
YIEHMamu CMUCHEHHs HA PI3HUX hopmamax aiinie ma 00CHiONCeHHsI NOEOHanHs areopummie Xapgmana ma LZ78, wo
paniuie He 6Y10 wupoko docriodicero. Lle do36onse ompumamu Oinbwt enuboKe po3yMIHHIA NPoyecy CMUCHEeHHS ailiié
PpizHo20 hopmamy ma suseumu epekmugHi areopummu 01 KOHKpemHuux munieé oanux. Hayrkoea poboma mooice cnpusmu
PO36UMK) MA 800CKOHALEHHIO MemMo0i8 CIMUCHEHHS (Datllie i Mamu npaKmuiHe 3aCmoCcy8ants y pisHux oonacmsx, maxux
5K 30epicanHa ma nepeoaya OaHUX, CIMUCHeHHs aiinié i NOKpawieHHs NPOOYKMUSHOCMI cucmem 00podxu ingopmayii.

Ipaxkmuuna snawumicmo yiei pobomu nonsieac y it nomeHyiunil kopucmi 0as pisHux cep. Bona nadae pexomenoa-
Yii ma UCHOBKU U000 8UOOPY eheKMUBHUX aNeOpUmMmie CmucHenHs ¢haiinie piznozo gopmamy. Lle modce mamu nosu-
MUGHUL 6NIUE HA 30epicanHs Ma nepeoaiy OaHux, WeUOKICMb 00pOOKU OAHUX, PO3POOKY NPOSPAMHO20 3a0e3nedeHHs
ma pobomy 3 MyTbmuUMeOiuHUMU OAHUMU. 3ACMOCYBAHHA ONMUMATLHUX AIOPUMMIE CIUCHEHHS O0NOMA2A€ 3MEHUUMU
06csz atiinis, ekoHomMums pecypcu ma noANULYE KOPUCMY8aybKull 00C8Iio.

Knrouoei cnosa: arzopummu, cmucrenns, kooyeauns, Lllennon-@ano, Xagppman, RLE, LZ78.

Problem statement

Every year, the amount of digital information generated and processed is growing. This leads to the need to increase
the capacity of data storage and increase the bandwidth in computer networks.

Although the modernization of computer networks and storage systems is inevitable, it is possible to use these systems
rationally to avoid unnecessary modernization costs.

One solution to this problem is data compression. Data compression is the process of converting input data into a
smaller volume that can be more conveniently stored and transmitted.

Data compression is an important element in the storage and transmission of information in the modern world. By
compressing data, you can reduce the amount of information that needs to be stored or transmitted, thereby reducing
storage costs and increasing data transfer speeds. Data compression is essential in industries where data processing,
storage, and transmission are important. It helps to reduce the amount of data, save disk space, and reduce the cost of data
storage and transmission. Today, data compression is used in all industries and in everyday life, although the end user
may not think about it.

Existing data compression methods can be divided into two groups: lossless compression methods and lossy
compression methods [1].

Lossless compression methods are compression methods where the encoded data can be recovered with bit accuracy.
These methods can be used to compress any kind of data: video, audio, text, programs, etc.

Lossless compression methods are versatile because they allow you to compress both important documents that
must be identical to the original version after decompression and multimedia. Although complex methods that combine
lossy and lossless compression are usually used to compress multimedia data, lossless compression alone guarantees the
maximum quality of this data after decompression, so this approach is also common and used.
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The peculiarity of lossy compression methods is the impossibility of full data recovery. These methods are used when
it is acceptable to have a difference between the data before compression and after decompression. Usually, the scope of
lossy compression methods is limited to the compression of photo, video, and audio data.

It should be noted that it is impossible to compress data indefinitely. In the case of using lossy compression methods,
information will be lost and its amount will tend to be zero. When using lossless compression methods, in the best-case
scenario, the average code length can reach the value of the source entropy. But in practice, after several iterations of
compression, the file may start to "grow", because, for example, in the case of Shannon-Fano encoding, the file must
store not only the encoded sequence but also the data for reconstructing the binary tree that will be needed for decoding,
as well as additional bits that are not used at all. Since the smallest unit of addressing is a byte, the sequence must be
supplemented with bits to write to disk so that the total number of bits is a multiple of 8 and can be written as bytes.

Research publications

The analysis of research and publications comparing the efficiency of Shannon-Fano, Huffman, RLE, and LZ78
compression methods gives us important conclusions about their properties and applications.

Data compression is an important stage in the processing and transmission of information, especially in conditions of
limited resources or limited bandwidth. The optimal data compression method depends on the specific context, such as
the type of data, its properties, and size [2].

Studies show that the Huffman method is effective for compressing text data with uneven character distribution. It
uses variable length codes, where frequent characters are represented by shortcodes and rare characters by long codes [3].

The Shannon-Fano method also uses variable-length codes but is based on recursively dividing characters in a set
into subsets with close probabilities. This method shows good results but may be less efficient than the Huffman method.

RLE is a simple compression method that is based on replacing repeated sequences of characters with a single character
followed by the number of repetitions. This method is well suited for data with a large number of repetitions, such as
images with rich geometric structures. It can achieve high compression efficiency for such data types but has limited
suitability for compressing other data types that do not have repeating sequences.

LZ78 is a compression method that is based on building a dictionary of repeated phrases during compression. It uses
a combination of character code and references to previous phrases to create new phrases. LZ78 performs well for data
with many repetitions and repeated phrases, such as text data and some types of images.

To summarise, studies show that the effectiveness of Shannon-Fano, Huffman, RLE, and LZ78 compression methods
depends on the type of data to be compressed. Each of these methods has its own advantages and limitations. The optimal
choice of compression method depends on the specific context and data compression requirements.

The purpose of the study is to investigate compression algorithms, and their software implementation, compare the
efficiency of compressing files of different formats, and determine the feasibility and uses.

The main material

The Shannon-Fano algorithm is one of the earliest data compression algorithms developed by Claude Shannon and
Robert Fano in 1948.

The Shannon-Fano algorithm counts the number of symbols in the original text to determine their frequency of
occurrence and then builds a binary tree. This encoding method is prefix-based. This means that there is no code for which
another code would be a prefix, which allows for decoding the encoded text without error. However, the disadvantage of
the Shannon-Fano algorithm is that it does not always provide optimal text compression [4].

The Shannon-Fano algorithm is based on the idea of dividing the lists of symbols in the original text into two groups
with a minimum difference in their total weight, which is then encoded with different prefixes. This process is repeated
recursively for each group of symbols until each symbol is assigned its own code [5].

The Shannon-Fano coding algorithm:

Step 1: calculating the frequency of symbol occurrence;

Step 2: sorting the list of symbols according to frequencys;

Step 3: divide the list of symbols into two parts, with the total frequency counts of the symbols included in them being
as close to each other as possible. Add 1 to the code of one part and 0 to the other;

Step 4: consider each part separately. If there is more than one element in the resulting sublist, then perform Step 3.

It should be noted that many works mention sorting the list of symbols by descending frequency, but this does not
matter. Also, when creating programs, the absolute frequency is counted, because counting the relative frequency requires
additional calculations that are unreasonable in this context.

If the message was previously encoded by the ASCII encoding table, which encodes each symbol with one byte, the
size of the message itself will be significantly reduced. but there is a need to store the information that will be necessary
to restore the original message.

Since the bit length of a coded message is usually not a multiple of 8, it is necessary to supplement the message with
bits to enable the last part of the message to be recorded on a storage device or transmitted over a computer network.
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Since, for technical reasons, the message is supplemented with bits at the end, it is necessary to determine where
the created message has ended. If this is not done, nothing will prevent the program from reading a few more bits and
writing a couple more bytes to the file that is being restored after compression. This is unacceptable. In the proposed
implementation, a special code sequence is created to indicate the end of the file. It is encoded along with all bytes, so it
meets the prefix requirement and is the last to be written to the file.

The main problem with Shannon-Fano coding is that there is no guarantee of optimal coding, so the Huffman algorithm
is used.

The Huffman algorithm was patented in 1952 by David Huffman. It is similar to the Shannon-Fano algorithm, but
ensures optimal encoding of the message by guaranteeing that frequently occurring symbols will not have a code length
longer than symbols occurring less frequently [6].

The algorithm builds a binary tree where the leaves are the nodes that represent the symbols. The tree is built from the
leaves to the root.

Huffman coding algorithm:

Step 1: calculating the frequency of occurrence of symbols;

Step 2: finding the two nodes with the lowest frequency of occurrence;

Step 3: creating a new node with a frequency equal to the total frequencies of the found nodes. The resulting node is
the parent of the found nodes. Adding 1 to the code of one of the nodes and 0 to the code of the other. Removing the found
nodes from the search area;

Step 4: as long as there is more than one node, step 3.

The main difference between the Huffman algorithm and the Shannon-Fano algorithm is that in the Shannon-Fano
algorithm, the encoding is from the root to the leaf, while in the Huffman algorithm, it is from the leaf to the root.

The sequence of bits in the codes in both cases is determined from the root to the leaves.

Similarly, as in the case of Shannon-Fano encoding, the encoded message will be a sequence of bits that is formed by
writing the corresponding codes instead of symbols.

As with Shannon-Fano file compression, Huffman file compression requires writing to the file the data that will be
needed to reconstruct the binary tree, adding an additional node during encoding, and, if necessary, writing additional bits
at the end of the file.

The data for binary tree recovery is implementation-specific, so it may differ in different formats [7].

Another feature of the algorithm is that the codes and their lengths generated by the algorithm may also vary depending
on the implementation but always have the same average codeword length and the same message length.

The Huffman algorithm provides an average codeword length close to the source entropy and a fairly high encoding/
decoding rate, so it is still used, but usually in combination with other algorithms. In lossless compression methods, it is
usually used in combination with sequence compression algorithms. For example, the Deflate algorithm is a combination
of the LZ77 and Huffman algorithms. In lossy compression methods, it is used with lossy compression algorithms. For
example, in JPEG, lossy compression is performed first, and then the blocks resulting from lossy coding are encoded with
the Huffman algorithm.

The RLE algorithm was formulated in 1967 by an engineer and programmer Ivan Sutton. The idea of RLE encoding
is to encode series lengths and write a symbol and a number to the output file, which indicates the number of consecutive
repetitions of that symbol [8].

The RLE encoding algorithm:

Step 1: read the symbol, and identify it as a base symbol;

Step 2: set the iterator to 1;

Step 3: read the symbol. If it is identical to the base symbol, step 4, otherwise, step 5;

Step 4: increment the iterator, step 3;

Step 5: write the base symbol and counter;

Step 6: write the new ¢ symbol as the base symbol, step 2.

This method is fast and uses minimal RAM, but it can only compress files where byte duplication is common. If bytes
are not repeated in a row, the method can increase the file at least twice, depending on the size of the counter [9].

LZ78 is a data compression algorithm proposed by Abraham Lempel and Jakob Ziv in 1978 [10].

This algorithm works on replacing repeated text fragments with pointers to previous text fragments that have already
been encountered.

The main idea of the algorithm is to create a dictionary from unique text fragments and their indexes in the dictionary.
As you go through the text, the algorithm builds new dictionary elements by adding new unique fragments and also
remembers each new text fragment and its index in the dictionary [11].

For data compression, the LZ78 algorithm uses index-symbol pairs, which can be encoded in fewer bits than individual
symbols. Thus, during compression, repetitive text fragments can be encoded using replacement with the previous
fragments with a pointer to their index in the dictionary.
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Encoding algorithm using the LZ78 method:

Step 1: creating an empty dictionary;

Step 2: setting the index to zero;

Step 3: reading the symbol;

Step 4: creating an index-symbol pair;

Step 5: search for the index- symbols pair in the dictionary. If it is found, step 6, otherwise, step 7;

Step 6: set the index equal to the index of the found pair in the dictionary, step 3;

Step 7: if the dictionary is not full, add the index-symbol pair to the dictionary and save it to a file. Step 2.

An important nuance is that the size of the decoder dictionary must be at least as large as the encoder dictionary.
If you encounter a reference to a dictionary item that exceeds the size of the dictionary, the behavior of the program may
be unpredictable [12].

It is also important to note that the size of the dictionary should be limited to a specific value. In the case of using
the list of symbols with automatic expansion, the program can quickly occupy RAM in large quantities. You should also
consider the size of variables that store indexes because the size of the block that is written to the file greatly affects the
file size and the variable should not overflow during operation [13].

To determine the compression efficiency, we selected 3 files of different sizes with the formats bmp, avi, exe, svg, txt,
docx, wav, and mp3, which were compressed using the created programs. The results are shown in Table 1.

Table 1
Compression results
File type Size, b Size after compression, b
Shannon-Fano’s Huffman’s RLE LZ78
66614 21279 21251 24326 15483
bmp 224878 128175 127892 86338 63282
2305078 1603667 1601713 2498194 1590789
742478 349530 348123 437722 206271
avi 1480958 1191936 1186316 1908096 1073700
2279794 2050837 2041972 3496664 1990515
58188 37602 36323 77650 34476
exe 90624 69197 69017 154496 63831
3422558 2337648 2304403 4807708 2553375
22491 10972 10972 43468 15882
svg 31150 16426 16292 59122 22857
1315818 652497 648407 2461306 720525
429364 266866 265570 851266 241755
txt 959175 516991 515434 1911692 397134
4205781 2545690 2540770 8343772 2216709
15372 14974 14923 26330 19335
docx 75409 73919 73741 145008 89175
812853 814900 812969 1608446 936618
1073218 1017328 1015185 2137522 1152963
wav 5226766 4958190 4946632 10412130 5673471
10406738 9835206 9822602 20730756 11207190
764176 767031 764660 1511636 880290
mp3 2113939 2119861 2113266 4185290 2403408
5289384 5300723 5285340 10477126 5980500

Based on the table of compression results, the average compression ratios were calculated for each compression
method and a table was created based on this data (Table 2).

As can be seen from Tables 1 and 2, the LZ78 method is better suited for compressing bmp, avi, exe, and txt data
formats, but when used with data formats that are already compressed, such as docx, wav, and mp3, the resulting file is
larger than the original one.

At the same time, the Huffman algorithm proved to be better for compressing svg files and, when compressing
previously compressed files, does not increase the resulting file by more than 0.1%.
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Table 2
Table of average compression ratios
File type Average compression ratio

Shannon-Fano’s Huffman’s RLE LZ778

bmp 2.11 2.11 2.09 3.10
avi 1.49 1.50 1.04 2.04
exe 1.44 1.47 0.68 1.48
svg 1.99 2.00 0.53 1.54
txt 1.71 1.71 0.50 2.03
docx 1.01 1.02 0.54 0.84
wav 1.06 1.06 0.50 0.93
mp3 1.00 1.00 0.51 0.88

Taking into account the efficiency of LZ78 and the fact that the files do not become significantly larger when compressed
with the Huffman algorithm, we compressed the files first with the LZ78 algorithm and then compressed the result with
the Huffman method. The results are shown in Table 3.

Table 3
Results of compression by the LZ78 and Huffman algorithms
File type Size, b LZ78 + Huffman’s Compression ratio Average compression ratio

66614 13806 4.83

bmp 224878 59970 3.75 3.39
2305078 1437104 1.60
742478 193076 3.85

avi 1480958 1036176 1.43 2.15
2279794 1930033 1.18
58188 31153 1.87

exe 90624 59276 1.53 1.62
3422558 2334263 1.47
22491 13771 1.63

svg 31150 20037 1.55 1.73
1315818 654688 2.01
429364 229818 1.87

txt 959175 374366 2.56 2.14
4205781 2113515 1.99
15372 16902 091

docx 75409 79635 0.95 0.92
812853 894140 091
1073218 1123355 0.96

wav 5226766 5535567 0.94 0.95
10406738 10949817 0.95
764176 841273 091

mp3 2113939 2311717 0.91 0.91
5289384 5767211 0.92

As can be seen from Table 3, data compression first by the LZ78 algorithm and then by the Huffman method gives
a positive result — the average compression ratio has increased for all compressed files compared to compression by the
LZ78 algorithm alone.

This means that it is appropriate to use the Huffman algorithm in combination with other data compression methods,
and in this case, with sequence compression algorithms.
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It is worth noting that when encoding with the Huffman algorithm after LZ78 encoding, the index-symbol pair was
divided into 3 parts: two parts of the index and the symbol. If the index was encoded separately and the symbol separately,
or if the indexes were read in full and encoded together with the symbols, the compression results would be different.

Also, the size of the dictionary and the size of the variable that stores the index when encoding with the LZ78 method
are of great importance. In the proposed implementation, we used a dictionary of 65535 index-symbol pairs and a variable
that takes up two bytes and can take values from 0 to 65535.

Increasing the size of the dictionary may result in fewer index-character pairs in the resulting file since the encoded
sequences can be longer, but the indexes will require more memory.

Conclusions

RLE often leads to larger files and has compression rates that are significantly lower than those of LZ78, so its use is
not advisable.

The Shannon-Fano algorithm has the same complexity but lower performance than the Huffman algorithm, so its use
is also inappropriate.

LZ78 is more appropriate to use in combination with the Huffman algorithm to compress a lot of uncompressed data.

The Huffman algorithm compresses .svg files better than LZ78, does not lead to a significant increase in the resulting
file size when compressing encoded or encrypted data, and provides opportunities for creating methods based on
combining other algorithms.
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