BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

UDC 004.49 DOI DOI https://doi.org/10.35546/kntu2078-4481.2024.2.32

I. O. SUPRUNENKO

Postgraduate Student at the Department of Cybersecurity
at the Faculty of Information Technologies and Systems
Cherkasy State Technological University

ORCID: 0000-0002-1188-4804

V.M. RUDNYTSKYI

Doctor of Engineering Science, Professor, Chief Researcher
State Scientific Research Institute of Armament

and Military Equipment Testing and Certification,
Professor at the Department of Cybersecurity

at the Faculty of Information Technologies and Systems
Cherkasy State Technological University

ORCID: 0000-0003-3473-7433

COMPARISON OF MESSAGE PASSING SYSTEMS
IN CONTEXT OF ADAPTIVE LOGGING METHOD

Computer software is an important part of technological progress. As it becomes more and more complex and
sophisticated, so does the need to protect it. Apart from typical information security aspects of integrity, availability and
confidentiality, the scale and complexity of modern computer systems require a high level of control and observability.

The main goal of this research is to build upon the foundations laid by the general idea of an adaptive logging method
and introduce the next iteration of its design in the form of an appropriate message passing system to be used to propagate
required changes to corresponding implementation in an effective and performant manner.

Four different message passing system models are introduced, based on different technologies such as RabbitMQ
message broker, communication channels in PostgreSQL database management system, general web server architecture
and Linux-based process signaling interface. For each of those an overview description and graphical model is presented.

Finally, the resulting comparison is conducted, comparing aspects such as reliance on third-party software,
communication medium, error surface increase and authentication related considerations. As a result, the design based on
process signaling approach is determined to be the most suitable for adaptive logging method, as it does not introduce any
third-party software (and as such affects error surface in a somewhat negligible manner), binds directly to an observed
application, is built using low level concepts that should be present in multiple different platforms and programming
languages and should be able to reuse authentication logic that is already used when accessing computational machine
where observed program is executed.

Key words: information security, debugging, control, observability, adaptive logging method, message passing
systems, message broker, notification channel, Linux signals.

I. O. CYIIPYHEHKO

acripanT xadenpu kidepoesnexu

(axynpTeTy iHMOpPMAIIHHIX TEXHOIOTIH 1 cHCTeM
Yepkacbkuil nep>KaBHUI TEXHOJIOTIYHUH YHIBEpCUTET
ORCID: 0000-0002-1188-4804

B. M. PYIHULIbKUIA

JIOKTOP TEXHIYHHX HayK, Ipodecop, TONIOBHHUI HAYKOBHIT CIIBPOOITHHK
JlepxaBHUH HAYKOBO-JOCTITHUM IHCTUTYT BUIIPOOYBaHb i cepTH(iKalil 030pocHHs
Ta BIICHKOBOI TEXHIKH,

npodecop kadenpu kidepoenexku

(axynpTeTy iHpOpPMALIHUX TEXHOIOTIH Ta CHCTEM

Yepkacbkuii nep:KaBHUIH TEXHOJIOTIYHUH YHIBEpCUTET

ORCID: 0000-0003-3473-7433

HOPIBHAHHA CUCTEM HEPEJIAYI IOBIJIOMJIEHb
B KOHTEKCTI METOAY AJAIITUBHOI'O JIOT'YBAHHA

Komn’romepni mexnonoeii cknadaiomo 8adxicaugy 4acmumny mexuoaio2iunozo npozpecy. 3 niosuwjeHHsIM ix cKiaoHoc-
mi, cmae ckaaoniwe 3abe3neuysamu HanelcHull pieens ix besnexu. OKpiM munosux acnekmie iHgpopmayiinol besnexu,
a came yinichocmi, 00OCMYRHOCMI MAa KOH@IOeHYIIHOCMI, MaAcumad ma CKAAOHICIb CYYACHUX KOMN TOMEPHUX CUCHeM
nompebye UCOK020 PIBHSA KOHMPOJIIO Md CHOCTNEPEHCHOCHI.

228

BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

Mema yboeo docnioxcenus nonsgeae 8 momy, wob BUKOPUCAMU OCHOBU 3AKIA0eH] 8 3a2anbHy i0elo mMemoody adan-
TMUBHO20 02YBAHHSL MA NPeOCMABUMU HACMYNHY TMepayiio 1io2o po3eumKy y 6ueisadi 8i0n0GiOHoI cucmemu 0OMIHY HOGi-
OoMLeHHAMU OJis1 nepedayi HeOOXIOHUX 3MiH GIONOGIOHIU IMNIeMeHMAayii eqpeKmusHo ma 3 00CMAamHIM pieHeM UEUOKOOIL.

B pobomi npedcmasneno wvomupu pizni moodeni cucmem 0OMiHy ROBIOOMACHHAMU, WO OA3VIOMbCS HA PI3HUX MEXHO-
noeisax: mecedxc bpoxep RabbitMQ, komyHikayitini kananu cucmemu ynpagninus 6azoio oanux PostgreSQL, piwenns na
apximexmypi muny eeb-cepgeep ma Linux-opienmosanozo inmepgeiicy nepeoaui MidcnpoyecHux cueHauis. s Ko#CHo2o
3 HUX NpeoCcmasiieHo y3a2aibHeHull Onuc ma 2pagiuny mooens.

s Qinanbro20 NOPIGHAHHS YUX PilleHb GUKOPUCTIAHI MAKL ACNEeKMU, SIK. 3ALeNCHICMb 8I0 CIMOPOHHbO20 NPOSPAM-
HO20 3a0e3neueHHs], MeXanizM KOMYHIKayil, 30I1bueHHs NOGEPXHI 011 NOMUIIKU, d MAKONC NUMAHH aymenmu@ikayii.
B pezynomami naiibinew 6i0nosionow 00 umoe Memoody adanmueHO20 102Y8AHHS BUSHAYEHO MOO0elb, Wo 6a3yemvcs
Ha Midcnpoyechin 63a€mo0ii, OCKIIbKU BOHA He MICTNUMb 3aNeHCHOCTI 8i0 CMOPOHHIX Oibriomex (a momy 30inbuieHHAM
NOBePXHI OJis NOMUTKU MONCHA 3HEXIYBAMUL), HANPAMY NO8 A3YEMbCS i3 NPOZPAMOIO, 3d KO 8e0embCsi CHOCMEPeHCeH-
H5, N0OYO0BAHA 3 BUKOPUCHIAHHAM HU3LKOPIBHEBUX MEXAHI3MI8 o Marms Oymu npUcymHi bazamvox niamgopmax ma
MOBAX NPOSPAMYBAHHS, A MAKOHC MAE MONCIUBICINb BUKOPUCIOBYBAMU 8IHCE ICHYIOUULL MeXAHi3M aymernmuixayii, ujo
BUKOPUCTOBYEMBCSL 0TI OOCHYNY 00 0OUUCTIOBANLHOT MAWUHU, 0€ BCIANO0BTIEHa O0CTIONCY8ANA NPOSPAMA.

Knrwouosi cnosa: inpopmayiiina besnexa, debugging, Konmponw, CROCmepeiCHicmb, Memoo adanmueHo20 102y6aHHs,
cucmemu 0OMIHY NOBIOOMACHHAMU, KAHAK O Homugikayiu, Linux cuenanu.

Formulation of the problem

Information technologies play a huge part in everyday lives: from being able to read news online to managing multi
server international financial transactions. And it is also growing constantly: according to “Digital 2023: Global Overview
Report” [1] the number of people using mobile phones at the beginning of 2023 was estimated to be 5,44 billion (which is
around 68% of total population) and the number of unique mobile users has increased by 168 million new users compared
to previous year. Same can be stated about the Internet as one of the most widely used technologies in the world: the
number of total Internet users in October 2022 was 5,07 billion, but as of January 2023 it was already around 5,16 billion.

But not only mobile and Internet technologies are affected, different other aspects of human lives become increasingly
computerized. And in order to deal with such high demand, computer systems become more and more complex, grow
to a scale never seen before and as a result — face new issues, threats and dangers. Those might be quite different, from
algorithmic or communicational complexity to malicious actors seeking ways to compromise and harm other people.
As such it is extremely important to have software operating with appropriate levels of information security, protecting
users and their data. During COVID-19 pandemic it became evident that new challenges in the physical world require
corresponding changes in technology and a prime example is the usage of virtual private network (VPN) technologies
during initial outbreaks. As lots of people were forced to move to remote workspaces and work from home, it became
critical to protect their communications amidst the growing number of cybercriminals trying to leverage pandemic and
deal some serious damage. VPNs were used as a solution that would protect confidentiality of the exchange and the
demand was so high, that some enterprises expanded from having 8000 daily users to 80000 relying on VPN every day [2].

But among all information security aspects, not only integrity, availability and confidentiality require taking appropriate
protective measures and spending a sufficient amount of resources improving those, the same is also true for the aspect
of control over the information system. It is typically expressed in a form of observability and it is equally important
to know why things happen the way they do (in such huge complex systems like online banking applications), but
also how can one tell whether system behaves as expected and if not — what is the fastest way to resolve the issue and
restore required functionality. This research is focused on some aspects of observability in digital systems, with practical
solutions described as a part of a more global software solution aimed to solve several control related drawbacks.

Analysis of recent research and publications

There exist different approaches aimed at bringing more control into software systems. One of those is called “software
testing” and can be formally described as “the process of evaluating and verifying that a software product or application
does what it’s supposed to do” [3]. Using this approach makes software products more predictable and reliable, aiding
in tracking bugs and issues, but as it deals mainly with predefined setups and conditions, requires appropriate degree of
design and planning. Even though the process of writing tests might be something that developers don’t exactly enjoy,
Guilherme and Vincenzi [4] showed that it is possible to utilize software, such as ChatGPT, delegating the need of writing
some simple testing cases to it. It should be noted that introducing new code, that in theory should make other code
better, has some drawbacks. The study conducted by Peruma and Newman [5] showed that test files themselves might
contain bugs, which in result affects software quality. Their result data showed that developers usually introduce fixes
to functionality related files and testing related ones in separate commits, which is certainly a potential area of errors
during development. Some of the test related issues can be solved using specific software, for example, “tsDetect” tool
introduced by Peruma et al. [6], which detects possible issues in Java based test files with stated precision of 97%. Still not
every issue can be accounted for using some automated solution. And as Ardic and Zaidman [7] conclude in their analysis
of educational efforts related to testing, even though about a half of all analyzed curricula had a dedicated course about it,

229

BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

there is still need for more knowledge in areas such as creating acceptance, security and performance oriented tests, which
would require more expertise from developers.

In order to diagnose performance and runtime of a software system, a technique called monitoring is often used.
Monitoring can be described as the task of assessing the health of a system and is accomplished by collecting predefined
metrics during runtime execution of a software program, analyzing those afterwards [8]. It focuses on very general
characteristics of a computer, such as central processing unit (CPU) utilization, memory usage, amount and throughput of
disk operations, network traffic, etc. As a result, a wide variety of different software solutions can be monitored. Research
conducted by Wang et al. [9] showed that it is possible to utilize natural language processing in order to run diagnostics
and predict possible defects by extracting key data from the monitoring results. This can aid greatly in reducing human
error and making routine tasks less irritating. Even areas as complex as Internet-of-Things are known to make use of
monitoring and, as shown by Ma et al. [10], and complex software monitoring and early warning systems can be designed
to keep track of system’s performance.

Presenting main material

Similar solution to monitoring using predefined metrics is software logging which can be seen as a process of describing
program execution using small chunks of textual data called “logs”. Generally logging is implemented using “severity
only” approach, where each chunk of data is coupled with a small string literal value describing so-called “severity” of a
log invocation, which defines how critical this log message is (is it an error and requires immediate attention, or is it just
some informational data and does not require urgent processing) [11]. An improvement of this approach is presented in
[12] and is called “adaptive logging approach”. The formalization of it can be described using three main components.
First part is an adaptive logging function (1) and its main distinctive feature is that it adds a third argument, which serves
as a description-like primitive helping to identify particular log invocation:

ﬁog adp :4f(Sev yM T;’ncl) (1)

where Sev — severity of current log invocation, M — message, T;,., — set of tags that describe current invocation.
The second component is method (2), that allows to both initialize and reinitialize current configuration for an adaptive
logging method:

ﬁnit :f(SEV) C) (2)

where S,, — the lowest severity level runtime should report, C — special configuration object that maps tags to their
corresponding action, include or exclude.

Finally, last component is a configuration object C (3) and it is basically what allows to compare and decide whether
particular log invocation matches current logging setup:

C= Tmod Q& T && ... || T && T && ... || ... 3)

where T_ij — particular tag, mod (modifier) — “include” or “exclude”, && — equivalent of logical “AND” operator,
|| — equivalent of logical “OR” operator.

In order for this approach to become adaptive and flexible enough to match runtime requirements, that might change
“on the fly”, any software solution utilizing adaptive logging method requires some sort of message passing mechanism.
Several models describing typical setups with their corresponding message passing technology are described in this work
and then comparison of those is conducted, outlining their advantages and drawbacks.

One typical solution to use when there is a need to exchange messages is a message broker, which is basically a piece
of software that is responsible for receiving and delivering messages from producers to consumers. RabbitMQ [13] is
an example of a message broker and it functions based on concepts such as producers, queues and consumers. Producer
connects to a RabbitMQ instance and sends a message that is later forwarded to a consumer by the broker itself (Figure 1).

With this setup an external producer can initiate reconfiguration and all necessary parameters can come using payloads
of the messages in the message broker’s queue.

A bit simpler (but still dependent on separate services) solution can be to utilize notification channel functionality of
PostgreSQL object-relational database system [14]. It is similar to queues in RabbitMQ in that it also has concepts of
producers and consumers, but it’s somewhat simpler. Basically, a database server acts as a centralized communication
point, where all interested parties can subscribe to messages in a particular channel (using LISTEN clause) and anyone
wanting to pass some information can use NOTIFY clause (with optional payload if needed) in order to pass it to all live
subscribers. Compared to all the features that a typical message broker might have, like acknowledgment of message
processing, retry logic if the consumer is busy, timeouts, etc. — PostgreSQL gives less functionality, but it should suffice
for the needs of adaptive logging configuration override. Schematic model is presented in Figure 2.

While this looks similar to the model with message broker, main differences are that it’s more lightweight (as it lacks
some functionality that RabbitMQ provides) and that it is a perfect fit for projects that already use this database system,
as it does not require addition of new software to the codebase.

230

BICHHUK XHTY M 2, 2024 p.

TH®OPMALIHHI TEXHOJIOITI

Application

= RabbitMQ

main task |«

adaptive logging
method

implementation

T

adaptive logging
queue

1

adaptive logging
queue consumer

- |

Reinit command
producer

(initiates update of
current logging
configuration object)

Fig. 1. Message passing model — RabbitMQ

Application

PostgreSQL
U

main task

method

adaptive logging

implementation

‘-_—‘

adaptive logging

message

|

channel
F

subscription

PostgreSQL client

NOTIFY

- LISTEN (with optional payload)

Reinit command

producer

Fig. 2. Message passing model — PostgreSQL

Both models rely on some third party software to be implemented. This is fine if a project already relies on a required
solution, but that would make the applicability of the adaptive logging method more limited than it should be. As the main
requirement for propagation of reinitialization call is only to somehow trigger method (2) with new parameters, it is also
possible to utilize a web server technology (those are pretty common in different programming languages and platforms)
by subscribing to a particular web route in the same way as subscribing to queue or channel works. This design is much
more flexible and portable, as it relies on a general concept rather than on a particular implementation. It is also more
lightweight and as such, starting a small server is not as critical as with previous solutions. Figure 3 shows general scheme

of this approach:

Application

main task [«

adaptive logging
method

implementation

+—— Web request

a—— 4 = Reinit command

producer

Fig. 3. Message passing model — Web server

231

BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

Here the connection is more direct, going right to the application, which makes it more coupled than previous solutions,
but that should not be a big problem as required communication is relatively limited and also client-server text-based
information exchange is still pretty permissive.

For simplicity, the last model is described in terms of Linux-based systems with emphasis on process signaling
mechanism [15]. In its very basic form, process signals function similarly to other message passing technologies presented
previously, which means that it is possible to subscribe to some predefined signal and do some action after it occurs.
Most of those signals are very specific and often have behavior connected to them by default (like with SIGTERM or
SIGKILL). But there are also several mechanisms that can be used for user-defined signaling: real-time signals (defined
by the macros SIGRTMIN and SIGRTMAX) and two user-defined signals (SIGUSR1 and SIGUSR2). Emitting these
generally should not conflict with any default behaviors and gives a solution with lower overhead, compared to previous
three, and decreased error surface as there is no third party dependency and no new components are introduced just to use
a fraction of their capabilities. Figure 4 shows the corresponding model:

= Application

adaptive logging
method
€| implementation

main task
| ‘ signal ‘
subscription = Reinit signal
producer

raisefkil — |

Fig. 4. Message passing model — process signals

Some important differences that should be emphasized right away are that with this setup reinitialization logic gets
enclosed near the main task and there is no payload connected to a signal (but that can be solved differently).

With these four main models described, the comparison should focus on several important aspects, such as: reliance
on third-party software, communication medium, authentication (this is a very important aspect as it is critical not
to introduce any new vulnerabilities while adding capabilities aimed to help with debugging), error surface increase
(whether proposed solution adds new potential “pain points” for developers to be aware of). Results of this comparison
are presented in Table 1.

Table 1
RabbitMQ PostgreSQL Web-server Process signals
Reliance on Maybe (some platforms.
. Yes Yes and languages have built-in No
third-party software .
solutions)
Communication medium Network Network Network Local
Authentication Provided by RabbitMQ Provided by PostgreSQL Has to be added manually Shared with application
Considerable (broker Considerable (RDBMS Minor Negligible
Error surface increase requires separate requires separate (relatively small addition to (works based on native
maintenance) maintenance) existing codebase) mechanisms)

Conclusions

Software systems take a huge part in human lives and as they become more and more complex to satisfy corresponding
needs, it is increasingly important to take care of aspects related to information security. As recent experience with
COVID-19 shows, the demand for secure and protected products can increase very rapidly. And not only in terms of
confidentiality, integrity and availability, but also with a high degree of control and observability. This work presented
a further improvement of the “adaptive logging method” and demonstrated 4 possible solutions to the issue of effective
and performant message passing process, based on message broker technology, capabilities of a PostgreSQL database
management system, general web-server architecture and using process signaling approach in Linux-based systems.

The comparison of those 4 is then presented with emphasis on things such as reliance on third-party software,
authentication considerations, required communication medium and increase of error surface. As a result, process
signaling approach appears to be the most suited for the requirements of adaptive logging method: it does not introduce
any new dependencies, functions based on local communication (completely eliminating network related issues), increase

232

BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

in error surface is rather negligible as it uses native capability of an operating system and the authentication related
concerns are handled using procedures that would already be in place and shared with the main application (such as
establishing secure shell connection in order to configure application on a remote host). Given these advantages the
number of applications that should be able to use adaptive logging should remain relatively high. One important limitation
that should be mentioned is that process signaling does not give a developer a standard way to pass any payloads together
with notification call, but as all of the communication is local by design this could be solved, for example, by reading
from a local file.

As for further research, topics, such as developing a more complex logging behavior, that would allow to change log
statement contents during program execution, and comparing the impact of general severity-based logging on program’s
execution flow and resource consumption with the one that is observed while using adaptive logging method, seem to
have a lot of scientific potential.

Bibliography

1. Digital 2023: Global Overview Report — DataReportal — Global Digital Insights. URL: https://datareportal.com/
reports/digital-2023-global-overview-report (nara 3sepuenns: 20.04.2024).

2. Abhijith M. S., Senthilvadivu K. IMPACT OF VPN TECHNOLOGY ON IT INDUSTRY DURING COVID-19
PANDEMIC. International Journal of Engineering Applied Sciences and Technology. 2020. Vol. 5, Issue 5, P. 152—157.
https://doi.org/10.33564/ijeast.2020.v05105.027.

3. What Is Software Testing? | IBM. URL: https://www.ibm.com/topics/software-testing (nara 3sepaeHHs: 20.04.2024).

4. Guilherme V., Vincenzi A. An initial investigation of ChatGPT unit test generation capability. In Proceedings
of the 8th Brazilian Symposium on Systematic and Automated Software Testing. 2023. P. 15-24. https://doi.
org/10.1145/3624032.3624035.

5. Peruma A., Newman C. D. On the Distribution of "Simple Stupid Bugs" in Unit Test Files: An Exploratory Study.
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain. 2021. P. 525-529.
https://doi.org/10.1109/MSR52588.2021.00067.

6. Peruma A. et al. TsDetect: an open source test smells detection tool. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2020.
P. 1650-1654. https://doi.org/10.1145/ 3368089.3417921.

7. Ardic B., Zaidman A. Hey Teachers, Teach Those Kids Some Software Testing. IEEE/ACM 5th International
Workshop on Software Engineering Education for the Next Generation (SEENG), Melbourne, Australia. 2023. P. 9-16.
https://doi.org/10.1109/SEENG59157.2023.00007.

8. Observability vs. monitoring: What’s the difference? URL: https://www.ibm.com/blog/ observability-vs-monitoring/
(mara 3Bepuenust: 20.04.2024).

9. Wang J., Liu B.J., He W., Xue J.K., Han X.Y. Research on computer application software monitoring data processing
technology based on NLP. The 10th International Conference on Quality, Reliability, Risk, Maintenance, and Safety
Engineering. 2021. Vol. 1043. https://doi.org/10.1088/ 1757-899X/1043/3/032021.

10. Ma H., Pljonkin A., Singh P.K. Design and implementation of Internet-of-Things software monitoring
and early warning system based on nonlinear technology. Nonlinear Engineering. 2022. Vol. 11, no. 1. P. 355-363.
https://doi.org/10.1515/nleng-2022-0036.

11. RFC 5424 — The Syslog Protocol. Gerhards, R. Adiscon GmbH, 2009.

12. Cynpynenxo 1.O., Pynauipkuii B.M. AnanTuBHUIA MiAX1 O JOTYBaHHS SIK HOBUH BUMIp CIIOCTEPEKHOCTI 32 IIPH-
KJIaJTHUM TIporpaMHuM 3ab6esnedeHHsaM. VII MixkHaponHa HaykoBo-nipakTHYHa KoH(epeHuis “Tndopmaniiina 6e3reka ta
KOMIT'I0TepHI TexHojorii”, M. Kponusaunpekui, 1 aucronana 2023. C. 45-46.

13. RabbitMQ tutorial — "Hello World!" | RabbitMQ. URL: https://www.rabbitmq.com/ tutorials/tutorial-
one-javascript (nara 3sepaeHHs: 21.04.2024).

14. PostgreSQL: Documentation: 16: 34.9. Asynchronous Notification. URL: https://www.postgresql.org/docs/
current/libpg-notify.html (nara 3Bepuenns: 21.04.2024).

15. Signal(7) — Linux manual page. URL: https://man7.org/linux/man-pages/man7/signal.7.html (nara 3BepHeHHS:
21.04.2024).

References
1. Digital 2023: Global Overview Report — DataReportal — Global Digital Insights. Retrieved from: https://datareportal.
com/reports/digital-2023-global-overview-report (accessed 20.04.2024).
2. Abhijith M. S., Senthilvadivu K. (2020). IMPACT OF VPN TECHNOLOGY ON IT INDUSTRY DURING COVID-
19 PANDEMIC. International Journal of Engineering Applied Sciences and Technology, Vol. 5, Issue 5, pp. 152-157.
https://doi.org/10.33564/ijeast.2020.v05105.027.

233

BICHHUK XHTY M 2, 2024 p. IH® OPMAIIIHHI TEXHOJIOI'TI

3. What Is Software Testing? | IBM. Retrieved from: https://www.ibm.com/topics/software-testing (accessed
20.04.2024).

4. Guilherme V., Vincenzi A. (2023). An initial investigation of ChatGPT unit test generation capability. In Proceedings
of the 8th Brazilian Symposium on Systematic and Automated Software Testing (SAST '23). Association for Computing
Machinery, New York, NY, USA, 15-24. https://doi.org/10.1145/3624032.3624035.

5. Peruma A., Newman C. D. (2021). On the Distribution of "Simple Stupid Bugs" in Unit Test Files: An Exploratory
Study. IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain. P. 525-529.
https://doi.org/10.1109/MSR52588.2021.00067.

6. Peruma A., Almalki K., Newman C. D., Mkaouer M. W., Ouni A., Palomba F. (2020). TsDetect: an open source
test smells detection tool. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. P. 1650-1654. https://doi.org/10.1145/3368089.3417921.

7. Ardic B., Zaidman A. (2023). Hey Teachers, Teach Those Kids Some Software Testing. [IEEE/ACM 5th International
Workshop on Software Engineering Education for the Next Generation (SEENG), Melbourne, Australia. P. 9-16.
https://doi.org/10.1109/SEENG59157.2023.00007.

8. Observability vs. monitoring: What’s the difference? Retrieved from https://www.ibm.com/blog/observability-vs-
monitoring/ (accessed 20.04.2024).

9. Wang J., Liu B.J., He W., Xue J.K., Han X.Y. (2021). Research on computer application software monitoring data
processing technology based on NLP. The 10th International Conference on Quality, Reliability, Risk, Maintenance, and
Safety Engineering. Vol. 1043. https://doi.org/10.1088/1757-899X/1043/3/032021.

10. Ma H., Pljonkin A., Singh P.K. (2022). Design and implementation of Internet-of-Things software monitoring
and early warning system based on nonlinear technology. Nonlinear Engineering. Vol. 11, no. 1, P. 355-363. https://doi.
org/10.1515/nleng-2022-0036.

11. Gerhards, R. (2009). RFC 5424 — The Syslog Protocol. Adiscon GmbH.

12. Suprunenko I., Rudnytskyi V. (2023). Adpative logging method as a new observability dimension in software.
Information security and computer technologies: materials of VII international scientific and practical conference, KNTU,
pp- 45-46.

13. RabbitMQ tutorial — "Hello World!" | RabbitMQ. Retrieved from: https://www.rabbitmq.com/tutorials/tutorial-
one-javascript (accessed 21.04.2024).

14. PostgreSQL: Documentation: 16: 34.9. Asynchronous Notification. Retrieved from: https://www.postgresql.org/
docs/current/libpg-notify.html (accessed 21.04.2024).

15. Signal(7) — Linux manual page. Retrieved from: https://man7.org/linux/man-pages/man7/signal.7.html (accessed
21.04.2024).

234

	Інформаційні технології
	I. O. SUPRUNENKO
	V. M. RUDNYTSKYI
	COMPARISON OF MESSAGE PASSING SYSTEMS
IN CONTEXT OF ADAPTIVE LOGGING METHOD

