BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

TH®OPMALINWHI TEXHOJOTI'TI

UDC 681.004.89:164.053 DOI https://doi.org/10.35546/kntu2078-4481.2024.3.26

V. G. VASENKO

Student at the Department of Computer Science
Kherson National Technical University
ORCID: 0009-0003-2558-2588

N. V. KORNILOVSKA

Associate Professor at the Department of Computer Science
Kherson National Technical University
ORCID: 0000-0002-8331-8027

S. V. VYSHEMYRSKA

Associate Professor at the Department of Computer Science
Kherson National Technical University
ORCID: 0000-0002-6343-7512

M. V. KARAMUSHKA

Associate Professor at the Department of Computer Science
Kherson National Technical University
ORCID: 0000-0001-5982-4598

ACCELERATING IMAGE PROCESSING USING PARALLEL COMPUTATIONS
IN OPENMP: DEVELOPMENT AND PERFORMANCE ANALYSIS
OF A GRAPHICS EDITOR

In today s digital world, image processing plays a crucial role in various aspects of human life. From creating visual
content for social media to analyzing medical images, powerful tools for image manipulation are in constant demand. The
growing requirements for image quality and processing speed make the search for efficient methods to accelerate these
processes highly relevant.

This paper investigates the development and implementation of a graphics editor that utilizes OpenMP parallel
computing to accelerate data processing. This technology enables the efficient distribution of computational tasks across
multiple processor cores, significantly improving system performance. The developed software offers a set of popular
graphic effects, including negative, grayscale, sepia, blur, sharpening, and posterization. Each effect is implemented in
both sequential and parallel modes using OpenMP, allowing for the comparison of different computational approaches.

To evaluate the effectiveness of the proposed solution, a series of experiments were conducted on images of various
sizes. These experiments involved applying each effect to images ranging from small icons to high-quality photographs.
A comparative analysis of the efficiency of sequential and parallel computation methods demonstrated the significant
advantages of the latter. The results of the study show a substantial acceleration of image processing when using
OpenMP technology. This acceleration is particularly noticeable for computationally intensive effects such as blurring
or sharpening, and when working with large images. In some cases, it was possible to achieve a significant increase in
processing speed, opening up new possibilities for working with large volumes of graphic data.

This research has significant practical value for software developers working on optimizing the performance of
graphics editors and other image processing applications. It demonstrates how the application of modern parallel
computing technologies can significantly improve the efficiency of working with graphic data, paving the way for the
creation of more powerful and faster image processing tools.

Key words: graphics editor, parallel computing, OpenMP, Qt, image processing, performance optimization, C++.

B.T'. BACEHKO

cTyzneHT Kadeapy iHGOpMaTHKH i KOMIT FOTEPHHX HayK
XepcoHChKHiT HalliOHANBHAH TeXHIYHUI yHIBEpCHTET
ORCID: 0009-0003-2558-2588

H. B. KOPHIUIIOBCBKA

JOLEHT Kadeapu iHPOPMATHKH | KOMIT IOTEPHUX HAyK
XepcoHChKHI HALIOHANBHUH TeXHIYHHN YHIBEPCHTET
ORCID: 0000-0002-8331-8027

206

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

C. B. BUIIEMHNPCBKA

JIOLICHT KadeapH iHPOopMaTHKH i KOMIT FOTEPHNX HAYK
XepcoHChKHI HAalliOHAIBHUH TeXHIYHUN YHIBEPCHTET
ORCID: 0000-0002-6343-7512

M. B. KAPAMVIIKA

JOUEHT Kadenpu iHPOPMATHUKH i KOMIT IOTEPHUX HAYK
XepcOHChKHI HALIOHANBHUH TEXHIYHHN YHIBEPCHTET
ORCID: 0000-0001-5982-4598

HNPUCKOPEHHSA OBPOBKHU I'PA®IYHUX JAHUX 3A JOITOMOTI'OIO ITAPAJIEJIBHUX
OBYUCJIEHBb B OPENMP: PO3POBKA TA AHAJII3 ITPOAYKTUBHOCTI T'PA®IYHOTI'O
PEJAKTOPA 30BPAKEHbD

YV cyuacnomy ceimi yugposux mexnonoeiii obpobra epagiunux oanux eidizpae Kuo4o8y poiv y bazamvox chepax
orcummeOisibHocmi 10OuHU. Bi0 cmeopenHs 6i3yanbHO20 KOHMEHMY 015 COYIANbHUX Mepedc 00 AHANI3Y MeOUYHUX
3HIMKIG — YCIoOU NOMPIOHI NOMYICHT IHCMPYMEHMU O MAHINYIAYIT 300padicenuamu. 3pocmaroui sumozu 00 AKocmi ma
weuoKkocmi 00poOKU 300paicerHb podIAMb AKMYATbHUM NOWYK eqheKMUBHUX MemO00dié NPUCKOPEHHS YUX Npoyecis.

Y yitt pobomi oocrioscyemvca pospobxa ma npogadicents cpaghiuHo2o pedakmopa 300paxcerb 3 GUKOPUCTIAHHAM
napanenvHux obyucienb Ha ochosi mexuonozcii OpenMP 013 npuckopenns obpodxu oanux. Ll mexuonozis 003eonsae
eekmusHo po3nooiisimu OOYUCTIOBANIbHI 3A60AHHS MINC OEKiIIbKOMA S0pamu npoyecopa, wo 3HAYHO RIOGUYYE
npooykmugnicme cucmemu. Pospobnene npocpamue 3abesneyents nponoHye Habip NOnyusApHux epaghiynux egexmis,
BKIIOYAIOYU He2amus, GiIOMIHKU Cipo2o, Cenir, posmumms, nioguweHHs pizkocmi ma nacmepuzayiio. Koowcen 3 yux
ehexmis peanizosano y 080X pexcumax. nociioosHomy ma napaneiviomy 3 gukopucmarnusam OpenMP. []e 0oseonsie He
MinbKu 06pooAMU 300padNCeHHA, ale i NOPIBHI8AMU eqheKMUBHICMb PI3HUX Ni0X00i8 00 0OUUCTEHD.

Jna oyinku egexmugHocmi 3anponoHO8aAHO20 pilleHHA NPOBeOeHO Cepilo eKchepumenmia 3 06pobKuU 300pajxcetsb
piznoi posmiprocmi. Lli excnepumenmu 6KIOHAIU 3ACMOCY8AHHS KOJCHO20 eheKmy 00 300padNCeHb PI3HO20 PO3MIPY — 6I0
MANEHbKUX IKOHOK 00 8UCOKOSIKICHUX pomoepapiu. [lopieHsanvHull ananiz epekmueHocmi noCiio08H020 Ma NAPANENIbHO20
Memooie 00UUCTeHHs NOKA3A8 3HAYHI nepesacu OCMAaHHb020. Pezynvmamu O00CHiONCeHHS 0eMOHCMPYIOmMb CYmmese
npuckopenHs 00podxu 306pasicers npu 3acmocysanti mexnonoeii OpenMP. Ocobnugo nomimuum ye nPUCKOPeHHs CMae
015 peCypCOEMHUX eheKmis, MaKux AK poIMUmms 4u niO8UWeHHs Pi3KoCmi, ma npu pobomi 3 300PaAHNCeHHAMU 8ENUKOL
posmiprocmi. YV 0esikux unaokax 80anocs 0ocsemu 6a2amokpammuo2o 30iIbUeHHs WUEUOKOCMI 00poOKU, Wo 6i0Kpusac
HOBI MOJICIUBOCIMI 0J1s1 pOOOMU 3 BENUKUMU 00CA2aMU SPAPIUHUX OAHUX.

Jane oocniodicennsn mae 3nauny npakmudny yiHHicmo O0Jis po3pOOHUKIE NPOZPAMHO20 3a0e3nedeHHsl, Wo Npayoions
Hao ONMUMI3AYIE NPOOYKMUBHOCI 2pa@IiyHUX pe0aKkmopié ma IHWUX 3ACMOCYHKI6 Ol 00poOKU 300padiceHb.
Bono demoncmpye, ax 3acmocy8anHs Cy4acHux mMexHONO2il NApaleNbHUX O0OYUCTIeHb MOdce CYMMEBO NiOGUUMU
egpexmusHicms podbomu 3 epaghiuHumMu Oanumu, SIOKpUBAIOYU WIAX 00 CMBOPEHHs OLlbUl NOMYHCHUX MA UWEUOKUX
incmpymenmie 06poOKU 300paiceis.

Knrouosi crosa: epagpiunuii peoakmop, napanensii oouucnenns, OpenMP, Qt, 0bpobka 306padicenb, onmumizayis
npodykmugrnocmi, C++.

Problem statement

The increasing complexity of image processing tasks, coupled with the proliferation of multi-core processors, has
necessitated the exploration of parallel computing techniques to enhance performance. This research focuses on develop-
ing a graphics editor that effectively utilizes parallel processing to accelerate image manipulation operations.

By leveraging the computational power of multi-core processors and employing parallel programming techniques, we
aim to create a high-performance graphics editor that can handle large images and complex image processing pipelines
efficiently. Traditional sequential image processing algorithms often struggle to meet the demands of modern applications,
which require real-time processing and high-quality results. Parallel computing offers a promising solution to these chal-
lenges by distributing the computational workload across multiple cores, leading to significant performance improvements.

The proposed graphics editor will incorporate a wide range of image processing functionalities, including image
enhancement, filtering, segmentation, and analysis. These operations are often computationally intensive, requiring sig-
nificant processing power to achieve satisfactory results. By parallelizing these tasks, we can reduce processing times and
enable users to manipulate images more efficiently.

Furthermore, the graphics editor will be designed to handle large images, which are becoming increasingly common
in fields such as medical imaging, scientific visualization, and digital photography. Traditional image processing algo-
rithms can struggle to process large images in a timely manner, leading to bottlenecks and reduced user productivity. By
leveraging parallel computing, we can overcome these limitations and enable users to work with large images seamlessly.

In addition to performance improvements, the graphics editor will also prioritize user experience. A well-designed
interface and intuitive tools will make it easy for users to apply various image processing techniques and achieve desired

207

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

results. The editor will also provide features for saving and sharing processed images, facilitating collaboration and work-
flow efficiency.

Overall, this research aims to develop a graphics editor that represents a significant advancement in the field of image
processing. By effectively utilizing parallel computing techniques, the editor will provide a powerful and efficient tool for
users to manipulate images, leading to improved productivity, enhanced creativity, and new possibilities for applications
across various domains.

Research publications

The development of a graphics editor that effectively utilizes parallel computing to accelerate image manipulation
operations is based on a significant body of previous research. Contemporary research in image processing highlights the
growing need for efficient algorithms capable of handling large datasets and performing complex operations in real-time.

Key research areas that underpin this study include: studies by [1] and [2] have introduced new parallel algorithms for
operations such as filtering, segmentation, and object recognition. These studies have demonstrated significant computa-
tional speedups through the parallelization of computational tasks.

Studies by [3, 4] have explored the use of Graphics Processing Units (GPUs) for accelerating various image process-
ing operations. The results of these studies have shown the high efficiency of GPUs for highly parallel computations. User
interfaces for graphics editors [5] have focused on developing intuitive user interfaces for graphics editors, allowing users
to effectively perform various image processing tasks.

Specifically, studies by [6] have been dedicated to the development of parallel algorithms for Gaussian blurring, one
of the most common operations in image processing. These studies have shown that the parallel implementation of this
algorithm can significantly reduce computation time, especially for large images.

The main material

The aim of this study is to develop a graphics editor using the Qt library [7, 12] for image processing employing
OpenMP technology [10, 11] and to compare its performance in sequential and parallel modes.

To achieve this goal, the following tasks were completed:

— Development of software with a graphical user interface based on C++ [8] and Qt, supporting a set of image pro-
cessing effects in both sequential and parallel modes.

— Implementation of the following graphic effects: negative, grayscale, sepia, blur, sharpening, and posterization [9].

— Testing the execution speed of all effects in parallel and sequential modes based on measurements of the execution
time of all graphic effects.

The architecture of the developed software is based on an object-oriented approach and generally consists of a
MainWindow window, which also includes other component elements.

(MainWindow : QMainWindow == ()} X)
4 menubar : QMenuBar)
centralwidget : QWidget
statusbar : QStatusBar
A\ J

Fig. 1. Object diagram of the MainWindow window

Let’s take a closer look at the components of the program’s interface that provide its functionality and ease of use.
QMenuBar, located at the top of the window, is an important navigation element. This menu bar provides the user with
access to the extended functionality of the program. It includes key options such as opening an image from disk for further
editing, saving the processed image to disk, allowing you to save the results of your work. For the user’s convenience,
there are informative windows with data about the program itself and its author, which allows you to better understand the
capabilities and origin of the software.

208

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

(MainWindow : QMainWindow — @ 2@

4 menubar : QMenuBar B

((menu : QMenu) (meny_2 : QMenu) (meny_3 : QMenu)

v
facton_1 : QAction) (“acton : QAction) [action_5 : QAction)
|acton_2: @Action) [acton_3: @Action| [action 6 : @Action)

laction_4 : QAction

centralwicget : QWidget

statusbar : QStatusBar
N J

Fig. 2. Object diagram of the QMenuBar element

QcentralWidget is the heart of the program — this is the central area of the window where the main user interaction
with the image takes place. It is here that uploaded files are displayed and further edited, making this component key to
the functionality of the program. QstatusBar, located at the bottom of the interface, performs an important information
function. This status bar is used to display various messages that inform the user about current processes and results of
actions. In addition, it displays the execution time of operations, which allows you to evaluate the performance of the
program and optimize image processing processes.

f‘.-'lain'u'l'ind:m- : QMainWindow - ﬁ?@
- ™y

menuhar ; GMenuBar

centralwidgel | QWidget
[combcsiox - aComboBox W

T gioupBon | QGroupBox |
O mdiofiuion - GRadicBubion
i O mdiofytion_2: CRadicButton |
| O mdioduion s CRadicBution
_ v 3 mdiclution_d : GRadioButton |
praphics\view : VO mdisBution” 5 - GRadioBution
MyGraphicsView ¢ O mdiofiution 0 GRadicButton
) toriconiaisider | QSder
+ [0 checsBox: QCheckiax
+ | pusrBunon : CPushBumes |
i 1
i | pusd Bulion_2 : CPushBulton |

o

statusbar | Q5tatusBar
b A

Fig. 3. Object diagram of the centralWidget element

The centralWidget area, which serves as the main workspace of the program, can be conditionally divided into two
functional parts:

The first and largest part is QGraphicsView, which occupies most of the window. This component is controlled by a spe-
cially developed class MyGraphicsView, created to ensure correct image scaling when the size of the main MainWindow
window changes. QGraphicsView is the key visualization element where the image loaded by the user is displayed. Here,
the user can observe the changes occurring to the image in real time when applying various graphic effects, allowing for
instant evaluation of the processing results.

The second part is QComboBox, which provides the ability to change the interface theme, switching between dark and
light modes, improving user comfort in different lighting conditions [9]. There is also a QGroupBox, which combines the
following elements, from top to bottom:

— QRadioButton — allows you to select a specific graphic effect to apply. It’s important to note that within a single
QGroupBox, only one QRadioButton can be active at a time, preventing conflicts when selecting effects.

— QSlider — provides the ability to fine-tune the intensity of certain effects, such as Blur, Sharpen, and Posterize. This
allows the user to achieve the desired level of image processing.

— QCheckBox — is responsible for activating the OpenMP technology, which allows for parallelizing computations,
potentially accelerating image processing on multi-core systems.

— QPushButton — buttons used to apply effects to the image. Details:

209

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

— pushButton — the “Apply” button, which initiates the application of the selected graphic effect to the image, allow-
ing you to see the processing result.

— pushButton 2 — the “Reset” button, which allows you to undo the applied effect, returning the original image
to QGraphicsView. This is useful for comparing processing results with the original image or if you need to start
editing again.

The QStatusBar, located at the bottom of the window, completes the interface composition. This element performs an
important informational function, displaying various messages about the program’s status and outputting the time spent
on calculations and applying graphic effects. Such information helps the user evaluate the efficiency of different opera-
tions and optimize their workflow.

Evaluation of parallelization efficiency: To demonstrate and analyze the effectiveness of parallelization in the
developed program, we will focus on the blur effect. This effect was chosen as a showcase example due to its high
computational complexity, making it an ideal candidate for evaluating the benefits of parallel computing. The OpenMP
method [10, 11] was used to implement parallelization, and its effectiveness was evaluated by comparing the execution
time of the sequential and parallel versions of the algorithm.

Before delving into the details of the evaluation, it is worth considering the blur algorithm itself and its implemen-
tation. The blur effect is a widely used graphic technique that smoothes an image by blending the colors of neighboring
pixels. This effect is often used to soften sharp edges, reduce noise in an image, or create a depth-of-field effect. Let’s
consider a step-by-step algorithm for implementing this effect:

1. The process begins with loading the source image into the program. This can be an image of any common format
(JPEG, PNG, BMP, etc.).

2. For the sake of uniform processing, the loaded image is converted to a single format — ARGB32. This format
allocates 32 bits per pixel, with 8 bits for each of the channels: alpha (transparency), red, green, and blue. Such standard-
ization simplifies further calculations and ensures predictable results.

3. At this stage, a weight is calculated for each pixel and its neighborhood using a Gaussian function. This function
creates a “kernel” — a weight matrix that determines how strongly each neighboring pixel will affect the final result. The
sum of all calculated weights is stored in the variable sumTotal. Then comes an important normalization step: each weight
is divided by sumTotal to ensure that the sum of all weights is equal to 1. This guarantees that the overall brightness of the
image remains unchanged after applying the effect.

4. Tterating over pixels and calculating new values. This phase is the most computationally intensive. The program
sequentially processes each pixel of the image. For each pixel, the following actions are performed:

— New values are calculated for each color channel (red, green, blue) based on the weights of the Gaussian matrix
and the values of neighboring pixels.

— This involves multiplying the color values of each neighboring pixel by the corresponding weight from the
Gaussian matrix and then adding the results.

— The resulting values are rounded and limited to the range of 0-255 to ensure correct color.

— Finally, the new pixel with the calculated values is set in place of the original one.

5. After processing all pixels, the resulting blurred image is saved. It can be displayed to the user for viewing or saved
to disk in the desired format.

This algorithm, especially its fourth step, is an ideal candidate for parallelization, as the processing of each pixel is an
independent operation. That is why using OpenMP to parallelize these calculations can significantly improve the perfor-
mance of the program, especially when processing large images or applying intensive blurring. Let’s move on to a direct
consideration of the results of the comparisons.

For a thorough evaluation of the effectiveness of parallel image processing, a comprehensive study was conducted
that included a series of carefully planned experiments. These experiments covered a wide range of conditions to ensure
a comprehensive analysis of the performance of the developed software.

Methodology:

1. For testing, 24 images were selected, varying in size from the smallest (100x100 pixels) to extremely large
(4000x4000 pixels). This range allowed us to evaluate the effectiveness of parallelization for different use cases.

2. Each graphic effect was applied to each image three times, both sequentially and in parallel mode. This ensured the
statistical reliability of the results, minimizing the impact of random fluctuations in system performance.

3. For each experiment, the average execution time was calculated, which allowed us to obtain reliable performance
indicators.

Experimental results: Analysis of the obtained data revealed a significant increase in performance when using
OpenMP parallelization [10, 11], especially when processing large images. For example:

1. For the blur effect on a 4000x4000 pixel image, the parallel mode demonstrated an impressive speedup, being
3.5 times faster than the sequential one.

210

BICHUK XHTY M 3, 2024 p.

IH®OPMAIIIHHI TEXHOJIOI'IT

(a)

Blur

Code fowchart

|

OBl » ONCHATa0S CorvortToF ormat
(Cmage Formae ARGHXI)

10 * RTelmage coneertToF ormat
(Qlmage Foonat, ARGDAZ)

|

|

X
Ooutbe siyma » radus | 2.0
doutie sum Totel = O
WEae T ades 24

{ (&)~
& {

— @)

Petarn romt

I=0
r <o e ']
. ‘

| ot st]

Gouthe red = 00,
wroen & 0.0, tius &

N = GBOoWnD. 2+ |

SOurcelnage Wil) - 1)

ot yt = gownai0, y + &

AOUCRITRDS hagher) « 1)
Lo

QRgh plosl » sosroeimage prael(xl.)
ot karraingex = () * Facin) * sioe o || +
e)

¥

red +& gRedpluet) * hermelharnetindas),
Feen o= WM.-WM]

sl sePinek s, y, GRS ped
{etigraen, (meithe
QAN SO CadTa0e Dui k. 7 1)

Epragma omp pacsid for colagae()
WKheoue &)
s _hveadslomp _gel_man_Dveads()|
P
o

¥

Blur

Epliratory fowchart

0 parafiet weh e Mot rmter of

v
The Solowng for 1000 wil be executed
I paradel with the maeimiem rumber of

Harle The COmedt biur Caltulataon S
ro o3ges ol the mage

Y

Harnde rmage ey uang vk
marin wnd bR radus vakees

Processing ook Image chancain waing b
et wmghes

:

-

.
' Cranges anch ook Parees 1 & -
| caviistod By eaveg Pe
§ 3 Varagarency Channel Uncharged

Fig. 4. Block diagram of the Blur effect execution (a);
explanatory block diagram of the Blur effect execution (b)

2. Other effects also showed a significant improvement in performance, with a speedup of 2 to 4 times, depending on
the algorithm complexity and image size.

Detailed analysis of the blur effect: This effect proved to be particularly indicative of the advantages of parallelization:

1. Even for the smallest images (100x100 pixels), an instant decrease in execution time was observed when using
parallel mode.

2. The decrease in execution time ranged from 75% to 85% for most image sizes.

3. The maximum speedup (84%) was observed for images of size 1300x1300, 1400x1400, 1600x1600, 2000x2000,
3000x3000, and 4000x4000 pixels.

4. The lowest acceleration (55%) was recorded for images of size 400x400 pixels.

5. It is worth noting that the blur effect proved to be significantly more computationally intensive compared to sim-
pler effects such as negative (Negative), grayscale (Grayscale), and sepia (Sepia). If for simple effects the execution time
was measured in milliseconds, for Blur it was more appropriate to use seconds as a unit of measurement.

211

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

Run time comparison for Blur effect

W Blur OpsniP = Blur

i

i

I

i

Image size x

T

Effect run time [mililseconds)

Fig. 5. Comparative diagram of execution time for the blur effect
for sequential and parallel computation methods

Conclusion

1. The analysis of the obtained results allows us to draw several important conclusions regarding the effectiveness of
applying parallel computations [11, 12] in image processing.

2. The effectiveness of parallelization demonstrates a clear positive correlation with the size of the processed image.
This is explained by the fact that larger images provide more opportunities for distributing the computational load among
threads.

3. For small images (up to 500x500 pixels), the difference between sequential and parallel modes may be less notice-
able. This is due to the fact that the overhead of creating and synchronizing threads may exceed the gain from parallel
processing for a relatively small amount of data.

4. Starting from a size of 1000x1000 pixels and above, the parallel mode demonstrates a significant acceleration.
Depending on the specific effect and system characteristics, this acceleration can reach 2-4 times compared to the sequen-
tial mode.

5. More complex effects, such as blur, show the greatest gain from parallelization. This is explained by the fact that
they provide more opportunities for distributing the computational load among threads.

6. The results demonstrate that parallel processing provides better scalability of the solution. With increasing image
size and effect complexity, the relative gain from parallelization increases, making this approach particularly valuable for
processing large amounts of data or complex graphic effects.

7. The use of parallel computations allows for more efficient use of available computing resources, especially on
modern multi-core processors.

Thus, the conducted study convincingly demonstrates the significant advantages of applying parallel computations in
image processing, especially for resource-intensive operations and large formats. This opens the way for the creation of
more efficient and productive graphics applications capable of processing large volumes of visual data in less time.

The developed graphics editor with OpenMP support demonstrates the effectiveness of using parallel computations to
accelerate the processing of digital images. The results of the experimental study confirm that using OpenMP can signif-
icantly improve the performance of software, especially when working with large images and resource-intensive graphic
effects.

The obtained results have practical significance for the development of high-performance image processing software
and can be used as a basis for further research in the field of optimizing graphics editors and other applications that

212

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

work with digital images. Further research can be directed towards optimizing algorithms for individual graphic effects,
improving methods for balancing the load between threads, and adapting the developed approach to other platforms and
architectures.

A) b)

B OMP imoge Eddor

= '|
;r.ﬂru‘d TeR

T o ETA

W Merams
| [Arr————
Lo

PosueTIn
Pismacip

Mecrepesns

| Metad Dhurdiemmii
CopstiiF:

| BpocRaTe

o

ravscaler 9 e Hac ove

Fig. 6. Interface of the developed program: A) light theme of the interface; B) dark theme of the interface;
C) result of applying the grayscale effect; D) result of applying the negative effect.

References

1. Ladkat, A. S., Date, A. A., & Inamdar, S. S. (2016, August). Development and comparison of serial and parallel
image processing algorithms. In 2016 International Conference on Inventive Computation Technologies (ICICT). Vol. 2,
pp. 1-4. IEEE. DOI: 10.1109/INVENTIVE.2016.7824894.

2. S. W. Song (2002) Models for Parallel and Distributed Computation. Applied Optimization. Vol.67, pp. 147-178.
DOI: 10.1007/978-1-4757-3609-0 6.

3. Baumker, A., & Dittrich, W. (1996, April). Parallel algorithms for image processing: Practical algorithms with
experiments. In Proceedings of International Conference on Parallel Processing. pp. 429-433. IEEE. DOI: 10.1109/
IPPS.1996.508091

4. Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., ... & Myers, E. W. (2020). CL1J: GPU-
accelerated image processing for everyone. Nature methods, 17(1), pp. 5-6. DOI: 10.1038/s41592-019-0650-1

5. Myers, B. A., McDaniel, R. G., & Kosbie, D. S. (1993, May). Marquise: Creating complete user interfaces by
demonstration. In Proceedings of the INTERACT 93 and CHI’93 Conference on Human Factors in Computing Systems.
pp- 293-300. DOI: 10.1145/169059.16922

6. Del Turco, R. R. (2012). After the editing is done: Designing a Graphic User Interface for digital editions. Digital
Medievalist, 7. DOIL: DOI:10.16995/DM.30

213

BICHHUK XHTY M 3, 2024 p. IH® OPMAIIIHHI TEXHOJIOITI

7. Blanchette, J., & Summerfield, M. (2019). C++ GUI Programming with Qt 5: Create Amazing Applications with
Qt. 2nd., Publishing House of Electronics Industry. 464 p.

8. Stroustrup, B. (2018). A Tour of C++ (2nd Edition). Addison-Wesley. 180 p. ISBN 978-0-13-499783-4.

9. Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th Edition). Pearson. 1168 p.
ISBN 9780133356724.

10. Chapman, B., Jost, G., & Van Der Pas, R. (2008). Using OpenMP: Portable Shared Memory Parallel Programming.
MIT Press. 384 p. ISBN: 9780262255905

1. Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. Dubuque, lowa : McGraw-Hill Education,
New York. 529 p.

12. Piccolino, M. (2018). “ Qt 5 Projects: Develop cross-platform applications with modern Uls using the powerful Qt
framework. Packt Publishing. 360 p. ISBN 178829551X.

214

