SOME GOING IS NEAR RESEARCH OF DEFORMATION OF FLEXIBLE CYLINDRICAL SHELLS
DOI:
https://doi.org/10.32782/KNTU2618-0340/2021.4.2.2.17Keywords:
cylindrical panel, nonlinear regional task, deformation, maximum terms, superficial loading, bending, the Vlasov-Kantorovich methodAbstract
In this work offered approach near the numeral decision of two-dimensional nonlinear regional tasks, that is based on application of close analytical by the Vlasov-Kantorovich method, method of linearization of unidimensional nonlinear regional tasks and numeral method of the discrete orthogonalizing of decision of linear regional tasks. Authenticity of results of decision of this class of tasks is investigated with the aim of approbation of the Vlasov-Kantorovich method. Offered approach near the numeral decision of regional tasks that describe geometrically nonlinear deformation of declivous cylindrical panels at the power loading with inout parameters. Influence of different variants of maximum terms is investigated on the curvilinear edges of panel and partition of load along of sending to her deformation. With the aim of approbation of the Vlasov- Kantorovich method, on the base of the built exact analytical decision of nonlinear regional task will conduct comparison of decision the Vlasov-Kantorovich method of task about deformation of circular infinitely long cylindrical panel of permanent thickness depending on the number of the retained members of row in a timetable. For this purpose the decision of task is considered about deformation of circular infinitely long cylindrical panel of permanent thickness, that is under the action of the external loading of q along directing of y. For comparison of results of decision of task at application of the Vlasov-Kantorovich method, members of row, of retained in a time-table got at a different number deformation of flexible cylindrical panel of complete sizes is considered under the action of the external loading of q. Tables over of dependence of peak values are brought for bending of w in the center of panel, on the basis of nonlinear theory, from loading at the different values of parameter of q. Influence of maximum terms is investigational on the curvilinear edges of circular cylindrical panel of complete sizes and permanent thickness of h under the action of the superficial loading of q. Tables over of dependence are brought values for bending of w in the center of panel, on the basis of nonlinear theory, from loading at the different values of parameter of q. Influence of maximum terms is investigational on the curvilinear edges of колової cylindrical panel of complete sizes and permanent thickness of h under the action of the superficial loading of q. Tables over of dependence of peak values are brought for bending of w in the center of panel, on the basis of linear and nonlinear theory, from loading at the different values of parameter of q and for the different variants of maximum terms. The tables of parameter tensions are brought around to the external and internal surfaces of shell in the geometrically nonlinear raising.
References
Григоренко Я.М., Мукоєд А.П. Розв’язання лінійних і нелінійних задач теорії оболонок на ЕОМ. Київ: Либідь, 1992 . 147 с.
Григоренко Я.М., Касьян Ю. Б. Исследование влияния изменения кривизны и распределения нагрузки на деформирование гибкой длинной цилиндрической оболочки. Прикладна механіка. 2002. Т. 38. № 3. С. 81–85.
Григоренко Я.М., Крюков Н. Н. Решение краевых задач теории пластин с переменными параметрами с применением сплайнов. Прикладна механіка. 2018. Т. 54. № 4. С. 3–8.
Григоренко Я.М., Тумашова О.В. Розв’язок двовимірних задач про нелінійну деформацію циліндричних панелей зі змінними параметрами. Доповіді АH УРСР Серія. А. 1988. №7. С. 36–39.
Grigorenko Y.M., Tumashova O.V., Sudavcova G.K. Numerical solving problems about deformation of elastic cylindrical panels with variable thickness. Applied Mechanics. 1984. V. 25. pp. 66–71.
Тумашова О.В., Козак Л.І. Порівняння точного та наближеного методу розв’язків задачі деформації нескінченно довгої циліндричної панелі. Математичне моделювання складних систем. Матеріали наук. практ. конф. Серія: Фізико-матем. та техн. науки. м. Львів, 16 травня 2007 р. Львів, 2007. С. 71–73.