SIMULATION OF HYDROELASTIC OSCILLATIONS OF STRUCTURAL ELEMENTS USING THE HYPERSINGULAR EQUATION METHOD
DOI:
https://doi.org/10.32782/KNTU2618-0340/2021.4.2.1.3Keywords:
thin plate, ideal incompressible fluid, vibrations, hypersingular integral equation, boundary element methodAbstract
A method for determining the frequencies and modes of natural vibrations of structural elements in bilateral contact with a liquid has been developed. It is supposed that the fluid is perfect and incompressible one, and its motion induced by the structural element is vortex-free. Under these suppositions, there exists a velocity potential that satisfies the Laplace equation everywhere in the area occupied by the liquid. The non-penetration condition is set on the surfaces of the structural element. This condition is the equality of the normal components of fluid velocities and design. To evaluate the structure displacements, the equations of motion under the fluid pressure are used. The fluid pressure, in turn, is determined from the Laplace equation, where the boundary conditions contain an unknown velocity. So, a related problem for determining hydroelastic vibrations is obtained. To solve the formulated problem, the method of given forms is used. First, the frequencies and modes of the elastic element vibrations are determined without taking into account the pressure force from the fluid. According to the obtained forms, the representation of the structure displacements interacting with the liquid is received as corresponding series. Next, the Neumann boundary value problem for the Laplace equation is solved, and here the boundary conditions contain known functions, namely, the elastic element modes of vibrations obtained in the first stage. The solution of this problem is performed using the potential theory. The unknown function is represented as a double layer potential. The boundary conditions lead to a hypersingular integral equation with respect to an unknown density that is the fluid pressure. Further, this two-dimensional hypersungular equation is reduced to one-dimensional one. An effective method for numerical solution of this equation has been developed. The obtained numerical results are compared with known analytical solutions. A good agreement of the results is obtained that testifies reliability of the proposed method. Then the algorithm for evaluating the matrix of added masses was developed, that made it possible to find the natural frequencies of the circular elastic plate taking into account the liquid added masses.
References
Ibrahim R. A. Liquid sloshing dynamics: theory and applications. Cambridge University Press, 2005. https://www.researchgate.net/publication/259815818_ .
Gavrilyuk I., M. Hermann Lukovsky I., Solodun O., Timokha, A. Natural Sloshing frequencies in Truncated Conical Tanks. Engineering Computations. 2008. Vol. 25, Iss: 6, pp. 518-540. https://www.researchgate.net/publication/245338809_ .
Gnitko V., Naumenko V., Rozova L., Strelnikova E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International. 2016. 17(1), pp. 75-87. https://www.researchgate.net/publication/301655238.
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering. 2018. Vol. 3, No.1, pp. 15-52.
http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf
Medvedovskaya T., Strelnikova E., Medvedyeva K. Free Hydroelastic Vibrations of Hydroturbine Head Covers. Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1, Iss: 1, pp. 45-50. DOI: 10.13140/RG.2.1.3527.4961. https://www.researchgate.net/publication/282868308_Free_Hydroelastic_Vibrations_of_Hydroturbine_Head.
Місюра C. Ю., Сметанкіна Н. В., Місюра Є. Ю. Раціональне моделювання кришки гідротурбіни для аналізу міцності. Вісн. Нац. техн. ун-ту «ХПІ». Сер. Динаміка і міцність машин. 2019. № 1. С. 34-39. http://repository.kpi.kharkov.ua/handle/KhPIPress/44370.
Ганчин Е. В., Ржевская И. Е., Стрельникова Е. А. Исследование динамических характеристик лопастей рабочих колес поворотно-лопастных гидротурбин при взаимодействии с жидкостью. Вісник Харківського національного університету. 2009. № 847. С. 79-86. http://mia.univer.kharkov.ua/11/30078.pdf.
Дегтярев К. Г., Стрельникова Е. А., Шелудько Г. А. Компьютерное моделирование лопастей ветроустановок с оптимальными параметрами. Вісн. Харківського нац. ун-ту імені В .Н. Каразіна. Серія: Математичне моделювання. Інформаційні технології. Автоматизовані системи управління. 2012. № 19. С. 81-86 http://mia.univer.kharkov.ua/19/30251.pdf.
Makeev V. I., Strelnikova E. A., Trofimenko P. E., Bondar A. V. On Choice of Design Parameters for an Aircraft. Int. Appl. Mech. 2013. 49, No. 5, pp.588-596. DOI: 10.1007/s10778-013-0592-8.
Serikova E., Strelnikova E., Yakovlev V. Mathematical model of dangerous changing the groundwater level in Ukrainian industrial cities. Journal of Environment Protection and Sustainable Development. 2015. Vol. 1, pp.86-90. https://www.researchgate.net/publication/281784323.
Sierikova E., Strelnikova E., Pisnia L. Pozdnyakova E. Flood risk management of Urban Territories Eco. Env. & Cons. 2020. 26 (3), pp.1068-1077. http://91.234.43.156/bitstream/123456789.
Сегерлинд Л. Применение метода конечных элементов. М.: Мир, 1979. 392 с. https://studizba.com/files/show/djvu/1936-1-segerlind-l--primenenie-metoda.html.
Brebbia C. A, Telles J. C. F., Wrobel L. C. Boundary element techniques: theory and applications in engineering. Springer-Verlag: Berlin and New York, 1984. https://studizba.com/files/show/djvu/1932-1-brebbiya-k-telles-zh-vroubel-l--metody.html.
Шелудько Г. А., Шупіков О. М., Сметанкіна Н. В., Угрімов С. В. Прикладний адаптивний пошук. Харків: Око, 2001. 191 с. http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis.
Шелудько, Г. А., Стрельникова E. A., Кантор Б. Я. Гибридные методы в задачах оптимального проектирования. 1. Поисковые методы. Харьков : Новое слово, 2008. 188 с. http://irbis-nbuv.gov.ua.
Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill, 1959. 594 с. https://www.cap-recifal.com/ccs_files/articles.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E. Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity. WIT Transactions on Engineering Sciences. 2019. Vol. 122, pp. 13-25. DOI: 10.2495/BE410021. https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/122/37070.
Гюнтер Н. М. Теория потенциала и ее применение к основным задачам математической физики. М.: Гостехтеориздат, 1953. 416 с. http://publ.lib.ru/ARCHIVES/G/GYUNTER_.
Стрельникова Е. А. Гиперсингулярные интегральные уравнения в двумерных краевых задачах для уравнения Лапласа и уравнений Ламе. Доп. НАН України. 2001. №3. С. 27-31. https://www.dopovidi-nanu.org.ua/uk/archive.
Гандель Ю.В. Введение в методы вычисления сингулярных и гиперсингулярных интегралов. Харьков: Изд. Харьк. национального ун-та им. В.Н. Каразина, 2000. 92с. http://ekhnuir.univer.kharkov.ua/handle/123456789/247.
Адамар Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа. М: Наука, 1978. 352 с. https://www.twirpx.com/file/1394980/.
Кантор Б. Я., Стрельникова Е. А. Гиперсингулярные интегральные уравнения в задачах механики сплошной среды. Харьков: Новое слово, 2005. 252 с. http://mia.univer.kharkov.ua/11/30090.pdf.
Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963. 1100 с. http://www.vixri.com/d/ Gradshtejn,%20Ryzhikov_Tablicy%20Integralov.pdf.
Karaiev A., Strelnikova E. Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2020. Vol. 11, № 1, 2050003. DOI: 10.1142/S1793962320500038.
Кит Г. С., Хай М. В. Метод потенциалов в трехмерных задачах термоупругости для тел с трещинами. Киев: Наук. думка, 1989. 288 с. https://www.e-varamu.ee/item/HMM7WKKBPAMHRIRDJ7BUXPYNW4X3S625.