DISEASE SPREADING MULTI-AGENT MODELING WITH GEOINFORMATION SUPPORT
DOI:
https://doi.org/10.32782/KNTU2618-0340/2021.4.2.1.21Keywords:
COVID-19; NetLogo; agent; virus; geoinformation support; multi-agent modeling; modeling the spread of infectious diseases; simulation scenarioAbstract
The subject of modern applied mathematics is the potential activity of a human agent, carried out in specific socio-cultural conditions. Mathematical models are built to obtain a specific result using a specific computing system about a specific problem situation. The subject of modeling is a practical life problem situation - real (not abstract), which includes a human agent for whom the situation is problematic: there is a state of situation A, but the agent needs to get the state of situation B. There is a gap between states A and B and is a problem. The purpose of the study is to enable the agent to take some practical action to achieve the goal, that is, to realize his intention, and thereby solve (or transform) the problem situation. Mathematical modeling is a powerful tool for studying complex objects and processes in the real world. It is especially irreplaceable in those areas of research where real experiments on objects are complicated or simply impossible. Epidemiology is an example of one such area. The problem of the spread of various kinds of infections and epidemics is relevant for all mankind. In the context of a coronavirus pandemic, it is important to identify patterns and characteristics of the spread of infection in order to apply effective means of protection and fight against it. In general, the relevance of modeling the dynamics of COVID-19 with geoinformation support is due to the need to determine the properties of the spread of the disease on the territory of Ukraine in the conditions of the Ukrainian society. This article is devoted to the development of a multi-agent model of the spread of infectious diseases with geoinformation support using the example of the spread of COVID-19 in the Dnipropetrovsk region, taking into account various scenarios for modeling the distribution and behavior of agents within the enclave. The analysis of dynamic regularities and morphological characteristics of coronavirus propagation is carried out by studying the multiagent model, which allows to take into account the individual properties of agent objects.
References
Васильєва Т.А., Лєонов С.В. СOVID-19, SARS, H5N1, A/H1N1, EVD: порівняльний аналіз впливу пандемій на економічний та соціальний розвиток у національному, світовому та регіональному контекстах. Науковий погляд: економіка та управління. №3 (69), 2020. С. 24-28.
COVID-19 Health System Response Monitor (HSRM). Режим доступу: [https://www.covid19healthsystem.org/mainpage.aspx]
Pauline van den Driessche: Reproduction numbers of infectious disease models. In: Infectious Disease Modelling, Band 2, KeAi Publishing, August 2017, P. 288–303.
Чумаченко, Д.І., Чумаченко, Т.О. Математичні моделі та методи прогнозування епідемічних процесів: монографія. Харків : ТОВ "Планета-Прінт", 2020. 180 с.
Stevens Н. Why outbreaks like coronavirus spread exponentially, and how to “flatten the curve”. WashingtonPost. 14/03/2020. Режим доступу: [https://www.washingtonpost.com/graphics/2020/world/corona-simulator/]
Vuorinen V., Hellsten A. Researchers modelling the spread of the coronavirus emphasise the importance of avoiding busy indoor spaces. // Режим доступу: [https://www.aalto.fi/en/news/researchers-modelling-the-spread-of-the-coronavirusemphasise-the-importance-of-avoiding-busy/]
Neher R., Aksamentov S., Noll N. COVID-19 scenarios. [https://covid19-scenarios.org/]
Бровченко І. Розробка математичної моделі поширення епідемії COVID-19 в Україні. Світогляд, 2020, No2 (82).