GEOMETRIC MODELING OF MICROCLIMATE PARAMETERS

Authors

  • М.О. TERESCHUK
  • О.О. GOLOVA
  • О.О. LEBEDEVA
  • N.М. LYNOK
  • О.V. GOLOVCHENKO

DOI:

https://doi.org/10.32782/KNTU2618-0340/2021.4.2.1.24

Keywords:

geometric modeling, graphic-analytical algorithmic models, comfortable thermal state of a person, microclimate parameters, BIM technologies

Abstract

The issues of the microclimate created by buildings, both residential and industrial, have always been quite important. This is due to the fact that in this way the environment necessary for a person is formed. The quality of the latter largely determines the health, feeling of comfort, the presence of a good mood, etc. In the current situation of the global pandemic COVID-19, these tasks have arisen at an even more responsible level, which requires the necessary sanitary, organizational, regulatory and other measures. Therefore, the improvement of mathematical modeling of microclimate processes during the automated design of various structures and their subsequent operation is an urgent scientific and applied task in theoretical and practical terms. It is known that in comparison with other mathematical models, geometric is characterized by such a significant qualitative advantage as clarity. This is especially useful, in particular, for construction engineers. This method greatly simplifies the large number of tasks they solve. The described direction of scientific research is quite attractive in the field of implementation of the obtained results in other industries, education, medicine, etc. This article shows the developed computer technology of visualization of complex functional dependences on the example of analytical definition of thermal comfort of the person. The proposed graphicanalytical algorithmic models of some microclimate parameters are also described. The effectiveness of this approach is shown in relation to its practical use. The introduction of the developed geometric tools in modern BIM (Building Information Modeling) technologies is promising, since it complements their capabilities for the automated design with appropriate means of studying the created microclimate in terms of observing the desired physicochemical parameters, such as air temperature, its humidity and mobility, the absence of unwanted harmful substances, etc. Thus, the performed work is devoted to the further development of computer geometric tools for modeling the microclimate parameters of various buildings, determining the prospects for conducting appropriate scientific research.

References

Барабаш М. С. Компьютерное моделирование процессов жизненного цикла объектов строительства. Киев: Сталь, 2014. 301 с.

Талапов В. В. Технология BIM: суть и особенности внедрения информационного моделирования зданий. Москва: ДМК Пресс, 2015. 410 с.

Ланцов А. Л. Компьютерное проектирование в архитектуре. ArchiCAD 11. Москва: ДМК-Пресс, 2009. 800 с.

Бессонова Н. В. Архитектурное параметрическое моделирование в Autodesk Revit Architecture 2014. Новосибирск: НГАСУ, 2016. 116 с.

Бодров В. И., Бодров М. В., Трифонов Н. А., Чурмеева Т. Н. Микроклимат зданий и сооружений. Нижний Новгород: Арабеск, 2001. 394 с.

Полосин И. И., Новосельцев Б. П., Шершнев В. Н. Теоретические основы создания микроклимата в помещении. Воронеж: ВГАСУ, 2005. 146 с.

Протасевич А. М. Строительная теплофизика ограждающих конструкций и микроклимат помещений. Минск: БНТУ, 2016. 453 с.

Беккер А. Системы вентиляции. Москва: Техносфера, 2007. 240 с.

Стефанов Е. В. Вентиляция и кондиционирование. Санкт-Петербург: АВОК Северо-Запад, 2005. 400 с.

ДСТУ Б EN ISO 7730:2011. Ергономіка теплового середовища. Аналітичне визначення та інтерпретація теплового комфорту на основі розрахунків показників PMV I PPD і критеріїв локального теплового комфорту. Київ: Мінрегіон України, 2012. 74 с.

Published

2023-04-14