SOME QUESTIONS OF SYNTHESIS IN CYBERNETICS AND COMPUTER SCIENCE
DOI:
https://doi.org/10.32782/mathematical-modelling/2022-5-2-10Keywords:
synthesis, cybernetics, computer science, artificial intelligence, system analysis, polymetrical analysis, Moiseev principle, PythonAbstract
The problem of synthesis in computer sciences, including cybernetics, artificial intelligence and system analysis, is analyzed. Main methods of realization this problem are discussed. Ways of search universal method of creation universal synthetic science are represented. As example of such universal method polymetric analysis is given. A short classification method of synthesis is represented. Main methods of synthesis are next: deductive, duductive-inductive, inductive and pragmatic. Perspective of further development of this research, including application polymetric method for the resolution main problems of computer sciences, is analyzing too. Deductive methods are using for the creation generalizing theories or theories of everything. For creation these theories six criteria were formulating. Deductiveinductive method is Newtonian four rules of conclusion in physics. This method allows creating classical mechanics, B. Russel logical types, etc. Inductive methods use for the receiving inductive generalized laws as Shennon theorem. Pragmatic methods is using for the creation systems, which are necessary for the rersolution for solving particular problems, for example, creating some kind of unit for solving a specific practical problem. This method often is using in engineering or in an area of human activity where there are already many developments and they often need to be combined with developments from other related fields. In programming, an example of pragmatic synthesis is the Python programming language, which includes elements of earlier programming languages. The boundaries between these four types of synthesis are sometimes rather arbitrary. A modern example of deductive-inductive synthesis is the Vladislav Dorofeev concept of strong artificial intelligence. Cybernetics itself is also a synthesis of various sciences. However, its synthesis in the Georg sense is inductive, and in the sense of polymetric analysis, it is deductive.
References
Trokhimchuck P. P. S. Beer centurial problem in cybernetics and methods of its resolution. In: Advanced in computer science, vol. 7, ch. 5. Ed. Mukesh Singla. New Delhi: AkiNik Publications, 2020. P. 87-118.
Бир С. Мы и сложность современного мира. В: Кибернетика сегодня: проблемы и предложения. М.: Знание, 1976. С. 7 – 32.
Trokhimchuck P. P. Theories of Everythings: Past, Present, Future. Saarbrukken: Lambert Academic Publishing, 2021. 260 p.
George F. H. Philosophical Foundations of Cybernetics. Abacus Press, London, 1976, 157.
George F. H. Foundations of cybernetics. Gordon and Breach Science Publishing, London, Paris, New York, 1977, 260
Genesereth M. R., Nillson N. I. Logical foundations of artificial intelligence. Palo Alto: Morgan Kauffman Publishers, Inc., 1988. 406 p.
Nillson N. I. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press, New York, 2010, 562.
Novikov D.A. Cybernetics 2.0. Advances in Systems Science and Application. Vol. 16(1), 2016. P. 1 – 18.
Dorofeev V., Trokhimchuck P. Hybrid Super Intelligence and Polymetrical Analysis. AIP Conference Proceedings, 2022, vol. 2656 (1), 020024, 9 p,.
Dorofeev V. P., Trokhimchuck P. P. Cоmputer Sciences and Synthesis: Retrospective and Perspective. In: Advanced in computer science, vol. 13. Ed. Mukesh Singla. New Delhi, AkiNik Publications, 2022. Р. 1-32.
Computer science/ Wilkipedia – the free encyclopedia. // http:/en.wikipedia.org/wiki/ Computer_science
Computing/ Wilkipedia – the free encyclopedia. // http:/en.wikipedia. org / wiki/ Computing
Nillson N. I. Artificial Intelligence. A new synthesis. San Francisco: Morgan Kauffman Publishers, Inc., 1998. 514 p.
Дорофеев В.П. Система сильного гибридного искусственного интеллекта и принципы Моисеева, Ефремова и Легасова. В кн.: Актуальные проблемы фундаментальной науки2021, Материалы IV международной конференции, под ред. П.П. Трохимчука и др. Луцк: Вежа-Принт, 2021. С. 47 – 50.
Russel S. J., Norwig P. Artificial Intelligence. A modern Approach. Harlow: Pearson Education Limited, 2021. 1166 р.
Kasabov N. K. Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence. Berlin: Springer-Verlag GmbH, 2019. 738 p.
Замуруєва О. В., Кримусь А. С., Ольхова Н. В. Об’єктно-орієнтоване програмування в Python. Курс лекцій. Частина 1. Луцьк: Вежа-Друк, 2018. 64 с.
Замуруєва О. В., Вілігурський О. М. Об’єктно-орієнтоване програмування в Python. Курс лекцій. Частина 2. Луцьк: Вежа-Друк, 2020. 72 с.