SIMULATION OF THE INVENTION PROCESS ON THE EXAMPLE OF LITHIUM-ION BATTERIES

Authors

  • V.Yu. SKOSAR
  • S.V. BURYLOV

DOI:

https://doi.org/10.32782/KNTU2618-0340/2021.4.1.23

Keywords:

качественная математическая модель изобретательского процесса, теория решения изобретательских задач, разработка литий-ионного аккумулятора

Abstract

Modeling the inventive process of developing lithium-ion batteries is an urgent area of research. This kind of modeling allows you to better see the ways to find strong inventive solutions. In addition, such modeling helps the inventor to overcome psychological inertia, increase the efficiency of scientific research and design and technological development. Such modeling allows to reduce the duration of the inventive process. The paper presents a retrospective analysis of the inventive process of developing lithium-ion batteries from the standpoint of the theory of inventive problem solving. Qualitative models of the studied technical system, as well as the process of its modernization, are proposed. The article identifies the technical contradictions that stimulated the inventive work of the developers of the first lithium-ion batteries, as well as the ways to overcome these contradictions. It is noted that the choice of lithium as an active metal corresponded to the desire for an ideal final result, according to the theory of inventive problem solving. The obtained qualitative mathematical models are presented in the form of traditional diagrams, according to the theory of inventive problem solving. On the basis of qualitative models, technical contradictions in modern lithium-ion batteries are highlighted. A method for overcoming these technical contradictions is proposed, in particular, a formal solution to the problem of increasing the safety of lithium-ion batteries and their ability to quickly charge is proposed. This formal solution significantly reduced the search for a specific technical solution - changing the structure of the separator and modernizing the active masses of the anode and cathode by mechanically activating the original powder materials. This has improved the safety of laboratory samples of lithium-ion batteries, as well as their ability to quickly charge. It is concluded that the modeling of the inventive process allows you to direct the creative search in the right direction, reduce the duration of the inventive process, and achieve strong inventive solutions. At the same time, of course, a formal solution obtained with the help of modeling will not replace a specific technical solution involving the use of design and technological innovations.

References

Кулова Т.Л., Николаев И.И., Фатеев В.Н., Алиев А.Ш. Современные

электрохимические системы аккумулирования энергии. Kimya Problemlеri (Chemical Problems), 2018. №1. С. 9-34

Жданова Е. Зарядились до «Нобеля». Сайт «За науку». URL: https://zanauku.mipt.ru/2019/12/12/zaryadilis-do-nobelya. (дата звернення: 31.05.2021).

Королев В. Заряженный «Нобель». Долгожданная премия за аккумуляторы, которые есть в каждом доме. URL: https://nplus1.ru/material/2019/10/09/nobelch. (дата звернення: 31.05.2021).

Бурмистрова Н.А., Сычева В.О., Чуриков А.В., Иванищева И.А. Фосфат литияжелеза LiFePO4 как катодный материал для литий-ионного аккумулятора. Электрохимическая энергетика, 2009. Т.9, №4. С. 188-198.

Потапенко А.В., Панов Э.В., Диамант В.А. Синтез и электрохимические характеристики композита LiFePO4/C в электролите на основе LiBOB. Укр. Хим. Журн., 2014. Т.80, №7. С. 52-56.

Сычева В.О., Чуриков А.В.. Литий-марганцевые шпинели: пути повышения стабильности и энергоемкости. Электрохимическая энергетика, 2009. Т.9, №4. С. 175-187.

Ярмоленко О.В., Юдина А.В., Игнатова А.А. Современное состояние и перспективы развития жидких электролитных систем для литий-ионных аккумуляторов. Электрохимическая энергетика, 2016. Т.16, №4. С. 155-195.

Альтшуллер Г.С. Творчество как точная наука. 2 изд., дополн. Петрозаводск: Скандинавия, 2004. 208 с.

Звонарев С.В. Основы математического моделирования. Екатеринбург: Изд-во Урал. ун-та, 2019. 112 с.

Багоцкий В.С., Скундин А.М. Химические источники тока. Москва: Энергоиздат, 1981. 360 с.

Published

2023-08-09