MATHEMATICAL MODEL AND OPTIMIZATION ALGORITHM BY MASS FOR TRANSMISSION OF TRACKED LOAD-CARRIER/PRIME MOVER MT-LB
DOI:
https://doi.org/10.32782/KNTU2618-0340/2020.3.2-2.1Keywords:
optimizing; multipurpose load-carrier/prime mover MT-LB; transmission; objective function; variables planning; constraints on the variables planning; algorithmAbstract
Solving the problem of optimizing for transmission of light multipurpose tracked loadcarrier/prime mover MT-LB is a perspective area of research because it improves the mass characteristics of the machine, to ensure the load capacity and durability of transmission at upgrading. Mathematical model of transmission optimization by mass was constructed, namely: optimization objective function of transmission by weight was built, which is quite correct transmission models, it takes into account the geometry, dimensions, weight and strength properties of the main parts and aggregates; variables planning are defined, which selected as basic geometric parameters of gearings: modules and number of teeth; a system of constraints on the variables planning was constructed, a technique for dynamically changing the constraints on the teeth number for gearbox was proposed. A sequence of constraint checking is proposed, which will reduce the amount and time of calculations to find the best solution. The solution is based on sensing the parameter space, where points of the LPτsequence are used as test points in a single multidimensional cube. Also, the applied methodology and detailed algorithm for optimal design of the transmission has been developed. They take into account the constructive, technical and technological features. They also allow to reduce the error of the calculations due to the error-control of the calculations of gear ratios and the equality of the axes distance for gearbox and additional reducer meshing's. The algorithm contains the following ethics: the task of the input data; generation of an external LPτ-sequence; check the relevant constraints; checking the limit on the inter-axes distances; calculation for the test point of gear ratios; determination of boundary numbers of teeth; generation of internal LPτ-sequence; check the relevant constraints; search for the best option; increase the accuracy of calculations; clarification of parameters; additional verification calculations.
References
Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Пер. с англ. Москва, Мир, 1986. Т.1. 349 с.
Александров Е. Е., Самородов В. Б. Проблемы многокритериальной оптимизации трансмиссий транспортных средств. Машиноведение и техносфера на рубеже 21 века. Т. 1. Донецк, 1999. С. 26–29.зубчастих редукторів. Вісник НТУ «ХПІ». Серія: Проблеми механічного приводу.2016. № 23 (1195). С. 64–71.
Бондаренко О. В., Устиненко О. В. Оптимізація співвісних ступінчастих приводівмашин по масогабаритним характеристикам на прикладі тривальних коробокпередач. Вісник НТУ «ХПІ». Тематичний випуск «Машинознавство та САПР».2012. № 22. С. 16–27.
Соболь И. М., Статников Р. Б. Выбор оптимальных параметров в задачах сомногими критериями. Москва, Дрофа, 2006. 175 с.
Легкий многоцелевой гусеничный транспортер-тягач МТ-ЛБ. Техническоеописание и инструкция по эксплуатации. Москва, Военное изд-во, 1985. 447 с.
Бондаренко О. В., Клочков І. Є., Устиненко О. В. Оптимізація трансмісії гусеничноготранспортера-тягача МТ-ЛБ за масою: цільова функція, змінні проектування таобмеження. Вісник НТУ «ХПІ». Серія: Машинознавство та САПР». 2017. № 12(1234). С. 3–8.