THE GROUNDWATER LEVEL CHANGING PROCESSES MODELING OF THE URBAN TERRITORIES IN 2D AND 3D FORMULATION
DOI:
https://doi.org/10.32782/KNTU2618-0340/2020.3.2-2.24Keywords:
additional groundwater replenishment, groundwater level, evaportanspiration, flooding, mathematical modeling of groundwater level changing, environmental safetyAbstract
In large cities, the technogenic impact factors on groundwater replenishment in several times higher than natural. Therefore, it is important to take into account natural and technogenic factors of groundwater influencing, to create mathematical models and forecasts to include it. Two-dimensional and three-dimensional modeling of groundwater level changing (GWL) processes will allow more clearly and objectively take into consideration the parameters of influencing GWL factors change in long-term forecasting. The aim is to increase the environmental safety level of areas prone to flooding by improving the forecasts of groundwater levels changes. On the basis of the Muftakhov A. Zh. equation the mathematical model has been developed, which allowed to obtain the solution of the formulated problem in a closed analytical form (in the form of series). It has been visualized the results and confirm the previously obtained data by the author of the impact of additional replenishment on the groundwater level using a traditional engineering approach. To model the process of GWL change in two-dimensional formulation, the filtration pressure equation in the case of flat filtration has been considered, which can be the basis for creating a mathematical model for describing GWL changes, which can take into account factors of artificial coverings and evapotranspiration. In many cities of Ukraine, the significant area is occupied by artificial coverings and structures that prevent natural processes of precipitation infiltration, evaporation and transpiration. Therefore, the modeling of changes in groundwater levels takes into account the existence of such areas that partially covered with artificial surfaces, where the influence of natural and technogenic factors will occur only on the undeveloped surface of this area. The necessity of creating three-dimensional mathematical models for describing the groundwater level changes and improving the forecasts of their changes has been substantiated. The three-dimensional mathematical model of groundwater level changing of urban areas has been developed, which takes into account atmospheric water infiltration, additional groundwater replenishment, transpiration, evaporation, evapotranspiration, and groundwater abstraction. The boundary conditions of the three-dimensional mathematical model have been formulated in the paper. Three-dimensional modeling of GWL change in contrast to two-dimensional allows taking into consideration the dependence of evapotranspiration on the presence of artificial coverings on the soil surface, which have uneven structure and have different filtration coefficients, to cause the due changes in GWL of urban areas. The groundwater level changing nature under the external factors influence has been determined in the paper. The necessity of creating three-dimensional mathematical models to describe groundwater level changing and improve forecasts of their changes has been substantiated. A three-dimensional mathematical model of groundwater level changing of urban areas has been developed, which takes into account atmospheric water infiltration, additional groundwater replenishment, transpiration, evaporation, evapotranspiration, and groundwater abstraction. The boundary conditions of a three-dimensional mathematical model have been formulated.
References
Маринова И. В. Современные математические методы прогноза и планирования эксплуатации водоносного горизонта. Вестник Таганского института управленияи экономики. 2008. №2. С. 74–77.
Klute A. A Numerical Method for Solving the Flow Equation for Water in Unsaturated Materials. Soil Science. 1952. I. 73(2). Р. 105–116.
Verma A. P. The Laplace Transform Solution of a one Dimensional Groundwater Recharge by Spreading. Annals of Geophysics. 1969. I. 22(1). Р. 25–31.
Prasad K. H., Kumar M. M., Sekhar M. Modeling Flow through Unsaturated Zone: Sensitivity to Unsaturated Soil Properties. Sadhana, Indian Academy of Sciences. 2001. Vol. 26(6). Р. 517–528.
Desai N. B. The Study of Problems Arises in Single Phase and Multiphase Flow through Porous Media. (Ph.D. Thesis), South Gujarat University, Surat, India. 2002.
Mehta M. N., Patel T. R. A Solution of the Burger’s Equation Type One Dimensional Groundwater Recharge by Spreading in Porous Media. J. Indian Academy of Mathematics. 2006. 28(1), Р. 25–32.
Joshi M. S., Desai N. B., Mehta M. N. One Dimensional and Unsaturated Fluid Flow through Porous Media. Int. J. Appl. Math. and Mech. 2010. Vol. 6(18). Р. 66–79.
Nasseri M., Daneshbod Y., Pirouz M. D., Rakhshandehroo G. R., Shirzad A. New Analytical Solution to Water Content Simulation in Porous Media. J. Irrigation and Drainage Engineering. 2012. Vol. 138(4). Р. 328–335.
Koohestani N, Halaghi MM, Dehghani AA. Numerical Simulation of Groundwater Level Using MODFLOW Software (A Case Study: Narmab Watershed, Golestan Province). International Journal of Advanced Biological and Biomedical Research. 2013. Vol. 1. Issue 8. P. 858–873.
Swaroop A., Mehta M. N. A Solution to the Problem of One Dimensional Flow in Unsaturated Porous Media Taking Finite Element Approach. Proceedings of the International Conference on Mathematical Modeling. (India, Roorkee, January 29-31, 2001). Roorkee, pp. 141–143.
Pathak S. P., Singh T. An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media. International Scholarly Research Notices. HindawiPublishing Corporation. 2014. Р. 1–4.
Яковлєв Є. О., Щербак О. В., Долін В. В. Моделювання гідрогеофільтраційного поля ґрунтових вод у зоні впливу металургійного виробництва. Мінеральні ресурси України. 2018. № 3. С. 19–25.
Телима С. В. Прогнозування процесів підтоплення міських територій та промислово-міських агломерацій в сучасних умовах. Методи і методика досліджень. Містобудування та терит. планув. 2005. Вип. 22. С. 367–378.
Муфтахов А. Ж. Гидродинамические основы прогноза подтопленияпромплощадок и фильтрационные расчеты защитного дренажа в сложных гидрогеологических условиях: автореф. дис. … д-ра техн. наук. Москва, 1975. 44с.
Кремез В. С. Актуальные вопросы моделирования подтопления территорий и других опасных процессов, связанных с изменением режима грунтовых вод. Екологія довкілля та безпека життєдіяльності. 2003. № 6. С. 56–64.
Кремез В. С., Буц Ю. В., Цимбал В. А. Моделювання процесу підтоплення територій в зоні впливу водосховищ. Людина та довкілля. Проблеми неоекології. 2012. № 1–2. C. 128–130.
Золотарев Н. В. Моделирование подтопления и дренирования мелиорируемых ландшафтов методом электронных таблиц с целью прогнозирования их состояния: автореф. дис. … канд. техн. наук. Омск, 2013. 22 с.
Венгерський П. С. Чисельне моделювання руху поверхневих і грунтових потоків та їх взаємодія на території водозбору: дис. д-ра фіз.-мат. наук. Львів, 2017. 293 с.
Серикова Е.Н., Яковлев В.В. Дополнительная инфильтрация в подземные воды натерритории крупных городов (на примере г. Харькова). Научно-технический сборник «Коммунальное хозяйство городов». 2011. С. 344–348.
Серикова Е. Н., Яковлев В. В. Роль управленческих методов в предотвращении подтопления городов. Науковий вісник будівництва. 2012. №68. С. 382−387.
Сєрікова О. М. Прогнозування і управління рівнем ґрунтових вод для підвищення екологічної безпеки забудованих територій України: автореф. дис. … канд. техн. наук : 21.06.01. Суми, 2019. 24 с.
Серикова Е.Н. Математическое моделирование повышения уровня грунтовых вод под воздействием дополнительной инфильтрации. Восточно-европейский журнал передовых технологий. 2012. №6/4 (60). С. 26–33.23. Serikova E., Strelnikova E., Yakovlev V. Mathematical Model of Dangerous Changing the Groundwater Level in Ukrainian Industrial Cities. Journal of Environment Protection and Sustainable Development, USA. 2015.Vol. 1, № 2. P. 86–90.