IMPROVED SPATIAL AND RADIOMETRIC RESOLUTION OF MULTISPECTRAL DIGITAL REMOTE SENSING IMAGES BASED ON THEIR ANALYTICAL SIGNALS
DOI:
https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.14Keywords:
multispectral image; spatial resolution; radiometric resolution; orthogonalization; analytical signal; Hilbert transform; index of structural similarityAbstract
Method of increasing the spatial and radiometric resolution of digital images of remote sensing recorded in arbitrary number of spectral intervals of radiation - carrier of video information is proposed. The method is based on the use of analytical signals corresponding to the brightness distribution functions of the fixed spectral channel images. It is shown that Hilbert conjugated components of these analytical signals are orthogonal to functions of brightness distribution of spectral channel images and have extended dynamic range of brightness levels distributions. Based on the analysis of analytical signals representing the brightness distributions of digital images recorded in different spectral channels, a way of incorporating in the distribution of brightness of images of these channels is a component with a higher than the original linear resolution while maintaining spectral information. Implementation of the proposed method includes the following steps: pairwise orthogonalization of brightness distribution functions of fixed spectral channel images; constructing analytical signals for each orthogonalized spectral component of a fixed multispectral image; replacement of Hilbert conjugated components of analytical signals of spectral images components by corresponding component of spectral channel image with maximum spatial resolution. Reconstruction of brightness distributions of synthesized images is carried out by sequential application of reverse Hilbert transform of generated conjugated components of analytical signals and transformation, and transformation inverse to used algorithm of orthogonalization the brightness distributions of images of spectral channels. It is shown that the proposed method ensures preservation of structural similarity of brightness distribution functions of brightness of initial and synthesized images for all fixed spectral channels. Energy entropy of brightness distributions is used as a quantitative measure of their spatial resolution.
References
Mahler R. Optimal/Robust Distributed Data Fusion: a Unified Approach. Proceedings of SPIE (USA, Orlando, April 24-26, 2000). Vol. 4052: Signal Processing, Sensor Fusion and Target Recognition. №. 4. Р. 128−138.
Wang Z. J., Ziou D., Armenakis C. A. Comparative analysis of image fusion methods.IEEE Transactions on Geoscience and Remote Sensing. 2005. № 43(6). Р. 1391–1402. DOI: 10.1109/TGRS.2005.846874.
Шовенгердт Р. А. Дистанционное зондирование. Модели и методы обработки изображений. М.: Техносфера, 2010. 556 с.
Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
Волошин В. И., Корчинсикй В. М. Повышение информативности видовых данных дистанционного зондирвания Земли. Космічна наука і технологія. 2006. Т. 12, № 5/6. С. 15−16.
Voloshin V. I., Korchinsky V. M., Kharitonov M. M. A Novel Method For Correction of Distortions and Improvement of Information Content in Sattelite-Acquired Multispecral Images. Advances and Challengers in Multispesonsor Data and Information Processing, 2007. P. 315−323.
Sangeetha M., Senthilrajan H. Super Resolution. A Review. International Journal of Engineering Research & Technology. 2016 Vol. 4, № 21. P. 1−5.
Смит С. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников. М.: ДОДЭКА-XXI. 2012. 720 с.
Вайнштейн Л. А., Вакман Д. Е. Разделение частот в теории колебаний и волн: монография. М.: Наука, 1983. 288 с.
Залманзон Л.А. Преобразования Фурье, Уодша, Хаара и их применение в управлении, связи и других областях: монография. М: Наука, 1989. 496 с.
Габидулин Э. М., Пилипчук Н. И. Лекции по теории информации. М.: МИФИ, 2007. 214 с.
Wang Z., Bovik A. K., Sheikh H. R., Simoncelli E. R. Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Transactions on Image Processing. 2004. Vol. 13. № 4. P. 600−612.