MANAGING THE TRANSPORTATION PROCESS IN THE CITY PASSENGER TRANSPORT SYSTEM

Authors

  • E.E. PROLISKO
  • V.N. SHUTS
  • A.A. KOZINSKY

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.20

Keywords:

transport, traffic schedule, optimization problem, delivery plan, algorithm

Abstract

The current scheduling system for urban public transport (bus, trolleybus, tram, etc.) is not optimal. It is not uncommon for passengers to get into a vehicle during rush hours due to lack of space, as well as cases when the vehicle is half empty along the entire route. A method for optimizing the timetable for urban public transport is proposed. We will consider the optimal schedule when all passengers at stops will be collected with a given probability and the maximum number of passengers in each public transport vehicle would be close (but not exceed) to the capacity of this vehicle. The controlled parameter with such optimization, in this work, is the moment of sending the vehicle along the route. It is assumed that all stops in the settlement are equipped with registrars, with the help of which the passenger, upon arriving at the stop, must indicate the destination of his movement. All these “requests” are automatically registered and used to determine when the vehicle leaves. It should be borne in mind that during the movement of this vehicle along the route, additional passengers may come to stops, the number and final stops of which, at the time of departure, are not known and can be presented as random. This optimization is possible if the probabilistic characteristics of passenger traffic are known or can be estimated. The known distributions of random variables specifying the number of passengers in a vehicle allow us to estimate the upper bound of this number with a given probability. It is shown in the paper that it is sufficient to have estimates of the distributions of the number of passengers arriving at each stop in a given time, and the probability that the arriving passenger will choose one of the stops along the route. The mathematical model of such a transport system is based on the proposed methods for assessing the distribution of all other random variables characterizing the passage of a vehicle along a route (the number of passengers in the vehicle and the number of passengers remaining at the stop).

References

Пролиско Е. Е., Шуть В. Н. Адаптивная модель транспортной системы «ИНФОБУС». Актульні проблеми фундаментальних наук (АПФН’2017)», присвячено пам’ятi Нормана Роберта Кемпбелла та Еррола Е. Гаррiса: Матерiали II мiжнардної наукової конференцiї. (м. Луцьк, 30 травня-5 червня 2017р.). Луцьк: Вежа-Друк, 2017. С. 202−205.

Капский Д. В., Пролиско Е. Е., Шуть В. Н. Система городского общественного транспорта будущего. Международная юбилейная научно-техническаяконференция «Автомобильные дороги безопасность и надежность» посвященная 90-летию Белорусской дорожной науки: Сборник докладов. Часть 1. (г. Минск, 22-23 ноября 2018 г.). Минск, 2018. С. 194−202.

Большаков И. А., Ракощиц В. С. Прикладная теория случайных потоков. М: Советское радио, 1978. 248 с.

Пролиско Е. Е., Шуть В. Н. Возможности и перспективы беспилотного городского общественного транспорта. Математические методы в технике и технологиях: сборник трудов Международной научной конференции. Т. 9. (Санкт-Петербург,10– 14 сентября 2018 г.). С-Пб.: издательство Политехнического университета, 2018. С. 16−23.

Shuts V., Kasyanik V. Mobile Autonomous Robots – a New Type of City PublicTransport. Transport and Telecommunication. 2011. Vol. 12. № 4. P. 52−60.

Published

2023-09-11