NUMERICAL SIMULATION OF SUBSONIC TURBULENT FLOW OF OSCILLATING NACA 0015 AIRFOIL
DOI:
https://doi.org/10.32782/2618-0340-2018-2-133-145Keywords:
oscillating aerodynamic airfoil, Navier-Stokes equations, turbulence model, flow separationAbstract
The results of calculations of the oscillating NACA 0015 airfoil for three flow regimes are presented: a weak flow separation corresponding to an average angle of attack of 4°; developed separation – 11° (subcritical flow around the airfoil); massive separation – 15° (supercritical flow around the airfoil). The authors have developed a specialized CFD package in which a compromise between the required computational resources and the quality of the results. On the one hand, provide a complete approach of computational fluid dynamics based on the Navier-Stokes equations, including several differential turbulence models, as well as multi-block approach for the flows in multiply connected domains. Designed CFD package allows us to solve the problem of dynamics and aerodynamics, including electrodynamics processes, electrochemistry, multiphase fluids, combustion processes and plasma kinetics. For the numerical simulation of the flow around an oscillating airfoil, Reynolds-averaged unsteady Navier-Stokes equations of an incompressible fluid closed by a one-parameter turbulent viscosity model are used. The developed implicit finitevolume numerical algorithm is based on the method of artificial compressibility modified for the calculation of unsteady tasks. Visualization of turbulent flow around oscillating NACA 0015 airfoil is obtained. The obtained fields of vorticity, instantaneous streamlines, and hysteresis curves of unsteady aerodynamic loads of the airfoil are analyzed for three characteristic flow regimes. The stages of generation, development and stalling of vortices are described in the flow around oscillating NACA 0015 airfoil. The developed technique makes it possible to reproduce the structure of an unsteady separated flow around an oscillating airfoil. The differences in the aerodynamic characteristics of the stationary and oscillating airfoils at the same angles of attack are in good agreement with the experimental data. Comparison of the computational results of a flow around an oscillating airfoil with experimental data and known calculations by other authors showed the advantage of the SALSA turbulence model compared to other tested models, especially in the presence of massive flow separation.
References
Кривцов, В. С., Олейников, А. М., Яковлев, А. И. Неисчерпаемая энергия. Харьков: Нац. аэрокосм. ун-т "ХАИ", 2003. 919 с.
Приходько, А. А., Редчиц, Д. А. Математическое моделирование динамики и аэродинамики ветроагрегатов. Вестник Харьковского национального университета. 2005. № 703, Вып. 5. С. 178-197.
McCroskey, W. J. Some current research in unsteady fluid dynamics. Fluid Mechanics. 1977. Vol. 12, № 3. P. 12-37.
McCroskey, W. J. Unsteady airfoils. Fluid Mechanics. 1982. Vol. 14, № 6. P. 285-301.
Carr, L. W. Progress in analysis and prediction of dynamic stall. J. Aircraft. 1988. Vol. 25, № 6. P. 285-301.
Telionis, D. P. Unsteady Boundary Layers, Separated and Attached. Journal of Fluids Engineering. 1977. 101(1). P. 29-43. DOI: 10.1115/1.3448732
Fant, D. B., Rockwcl, L. D. Physics of unsteady separated flows at high angle of attack. J. Aircraft. 1992. Vol. 29, № 8. P. 121-132.
Ghia, K. N., Yang, Y. Study of the Role of Unsteady Separation in the Formation of Dynamic Stall Vortex. AIAA Paper. 1992. Vol. 32, № 12. P. 1122-1134.
Visbal, M. R., Shang, J. S. Investigation of the Flow Structure Around a Rapidly Pitching Airfoil. AIAA Paper. 1989. Vol. 27, № 4. P. 805-832.
Wu, J. C., Huff, D. L. , Sankar, L. N. Evaluation of three turbulence models in static air loads and dynamic stall predictions. J. Aircraft. 1990. Vol. 27, № 5. P. 382-401.
Rizetta, D. P., Visbal, M. R. Comparative numerical study of two turbulence models for airfoil static and dynamic stall. AIAA Journal. 1993. Vol. 31, № 11. P. 784-799.
Rumsey, C. L., Vatsa, V. N. A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes. AIAA Paper. 1993. Vol. 31, № 11. P. 192-208.
Dindar, M., Kaynak U. Effect of turbulence modeling on dynamic stall of a NACA 0012 airfoil. AIAA Paper. 1992. Vol. 29, № 8. P. 27-53.
Geissler, W., Vollmers H. Unsteady separated flows on rotor airfoils analysis and visualization of numerical data. AIAA Paper. 1992. Vol. 29, № 8. P. 78-92.
Srinivasan, G. R., Ekaterinaris, J. A., McCroskey W. J. Evaluation of turbulence models for unsteady flows of an oscillating airfoil. Computers & Fluids. 1995. Vol. 24, № 7. P. 833-861.
Baldwin, B., Lomax, H. Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper. 1978. Vol. 19, № 4. P. 18-26.
Yakhot, V., Orzag S. A. Renormalization group analysis of turbulence. Basic theory. J. Scientific Computation. 1986. Vol. 14, № 4. P. 92-101.
Johnson, D. A., King, L. S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA Journal. 1985. Vol. 23, № 11. P. 1684-1699.
Johnson, D.A. Nonequilibrium algebraic turbulence modeling considerations for transonic airfoils and wings. AIAA Paper. 1992. Vol. 12, № 7. P. 26 -43.
Baldwin, B.S., Barth T. J. A one-equation turbulence transport model for high Reynolds number wall-bounded flows. AIAA Paper. 1991. Vol. 11, № 8. P. 610-631.
Spalart, P. R., Allmaras S. R. A one-equation turbulence model for aerodynamic flow AIAA Paper. 1992.Vol. 12, № 1. P. 439–478.
Chorin, A.J. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 1967. Vol. 2. P. 12–26.
Rung, T., Bunge, U., Schatz, M., Thiele, F. Restatement of the Spalart-Allmaras eddyviscosity model in strain-adaptive formulation. AIAA Journal. 2003. Vol. 4, № 7. P. 1396-1399.
Rogers, S., Kwak D. An upwind differencing scheme for the incompressible Navier-Stokes equations. Journal Numerical Mathematics. 1991. Vol. 8. P. 43-64.
Приходько, A. A., Редчиц, Д. А. Численное моделирование нестационарного течения в следе за цилиндром на основе уравнений Навье-Стокса. Прикладная гидромеханика. 2005. Т. 7, № 1. С. 56-71.
Prikhod’ko, A. A., Redtchits D. A. Numerical modeling of a viscous incompressible unsteady separated flow past a rotating cylinder. Fluid Dynamics. 2009. Vol. 44, № 6. P. 823-829.
Редчиц, Д.А. Алгоритм численного решения двумерных течений несжимаемой жидкости на основе уравнений Навье-Стокса и его верификация. Вісник Дніпропетровського університету. Механіка. 2004. Вип. 8. Т. 1, № 6. С. 67–75.
Piziali, R. A. An Experimental Investigation of 2D and 3D Oscillating Wing Aerodynamics for a Range of Angle of Attack Including Stall. NASA TM 4632. 1993. URL: https://ntrs.nasa.gov/search.jsp?R=19950012704
Флетчер, К. Вычислительные методы в динамике жидкости. Москва: Мир, 1991. Т. 1. 501 с.; Т. 2. 552 с.
Sheldahl, R. E., Climas P. C. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axes wind turbines. Sandia National Laboratories Albuquerque. SAND80-2114. 1995. P. 118.
Bunge, U., Martin, A., Schmidt, S., Schatz, M., Thiele F. DES and its Applications at Technical University of Berlin. Proc. International Conf. on DES – WORKSHOP. St. Petersburg, 2003.
Wilcox, D. C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal. 1988. Vol. 26, № 11. P. 1299-1310.
McCroskey, W. J., Pucci S. L. Viscous inviscid interaction on oscillating airfoils in subsonic flow. AIAA Journal. 1982. Vol. 20, № 5. P. 167-187.
Chandrasekhara M. S., Cart, L. W. Compressibility effects on dynamic stall of oscillating airfoils. In AGARD-CP-552. Proceedings of the AGARD 75th Fluid Dynamics Panel Meeting and Symposium on Aerodynamics and Aeroacoustics of Rotorcraft. (Germany, Berlin, 1982). Berlin, 1982.