DYNAMIC INTERACTION OF STRINGER AND CURVILINEAR ORTHOTROPIC HALF-SPACE

Authors

DOI:

https://doi.org/10.32782/mathematical-modelling/2023-6-2-7

Keywords:

asymptotic method, small parameter, elastic rod, dynamic load

Abstract

The relevance of studies of the dynamic interaction of a curvilinear orthotropic half-space with an inclusion should not cause doubts. Such problems of load transfer from the reinforcing fiber to the matrix are directly related to the mechanics of composites and help in the study of the problems of the destruction of such materials. As is known, the structure of the initial stresses has an arbitrary nature. So, for example, they can arise as a result of technological operations in the manufacture of modern construction materials and machines. Internal stresses, which can be considered initial in structural elements and machine parts, affect the properties of materials and change the dynamic characteristics of structures. Solving complex contact problems by the asymptotic method makes it possible to obtain results that can be used for streaming numerical data, evaluating the methodology of setting up certain experiments. Achieving satisfactory practical accuracy of the solutions obtained by the proposed perturbation method was also repeatedly demonstrated on test tasks. The purpose of this study is to apply an efficient asymptotic method for obtaining an analytical solution for the case of dynamic interaction of a stringer and an orthotropic half-space. An elastic orthotropic semi-finite body with cylindrical anisotropy reinforced by a rod of circular cross-section under dynamic load is considered. The radius of the rod is considered small. It is necessary to find the distribution of contact forces in the matrix and forces in the rod. As in the flat case, the boundary value problem is reduced to the sequential solution of potential theory problems (the main functions are from Laplace’s equations). Boundary conditions are formulated for each type of stress state. The distribution of forces in the rod and the function determining the distribution of contact stress were found. It is shown that without considering inertial forces, the forces in the stringer do not depend on time (quasi-static calculation). A number of boundary transitions connecting the dynamic and static formulation of the problem have been performed. The corresponding behavior of the main searched functions is shown.

References

Encyclopedia of Computational Mechanics / E. Stein, R.de Borst, T.J.R. Hughes, eds. Vol. 1. Solids, Vol. 2. Fluids. Wiley, 2004.

Vetrov O.S. Shevchenko V.P. Stady of the stress-strain state of ortotropic shells under the action of dynamical impulse loads. Journal of Mathematical Sciences. 2012. 183, № 2. P. 231–240.

Кагадій Т.С., Білова О.В., Щербина І.В., Шпорта А.Г. Математичне моделювання в задачах геометрично нелінійної теорії пружності. Прикладні питання математичного моделювання. 2021. Т. 3. No 2.1. С. 107–117.

Кагадій Т.С., Шпорта А.Г., Білова О.В., Щербина І.В. Напружено-деформований стан шаруватої основи з підкріплюючим елементом. Прикладні питання математичного моделювання. 2020. T. 3. No 2.1. С. 107–116.

Кагадій Т.С., Білова О.В., Щербина І.В. Застосування методу малого параметру при моделюванні задач теорії в ́язкопружності. Вісник Херсонського національного університету. 2019. No 2(69). Ч. 3. С. 69–76.

Математичні проблеми механіки неоднорідних структур / ред.: І. О. Луковський, Г. С. Кіт, Р. М. Кушнір. Львів : Ін-т приклад. проблем механіки і математики ім. Я. С. Підстригача НАН України, 2014. 412 с.

Wriggers P., Nackenhorst U. Analysis and Simulation of Contact Problems. LNACM Vol. 27, Berlin–Heidelberg: Springer, 2006. 408 p.

С. Ю. Бабич, Ю. П. Глухов, В. Ф. Лазар. Динамiчнi процеси в тiла(матерiалах) з початковими напруженнями. Частина 2. Плоскi динамiчнi контактнi задачi для пiвплощини з початковими напруженнями. Наук. вiсник Ужгород. ун-ту. 2021. Вип. 38, № 1. С. 114–122.

A. Chao Correas, A. Casares Crespo, H. Ghasemnejad, G. Roshan. Analytical Solutions to Predict Impact Behaviour of Stringer Stiffened Composite Aircraft Panels. Applied Composite Materials. An International Journal for the Science and Application of Composite Materials. Vol. 28, 2021, pp. 1237–1254.

Published

2023-12-26