BEZIER CURVES WITH POWER PARAMETERIZATION
DOI:
https://doi.org/10.32782/mathematical-modelling/2024-7-1-2Keywords:
automated design, geometric modeling, computer information technology, Bezier curves, power-law parameterization, technical objectsAbstract
The modern development of various equipment is characterized by the widespread use of computer information technologies during its design, manufacture and operation. These tools for industrial production are usually integrated CAD/CAM/CAE/PLM (Computer-Aided Design/Computer-Aided Manufacturing/Computer-Aided Engineering/Product Life-cycle Management) systems. In domestic practice, they correspond to the abbreviation CAD, that is, computer-aided design systems. One of their fundamental bases is geometric modeling. Currently, the most widely used mathematical apparatus for computer modeling is the form of NURBS (Non-Uniform Rational B-Splines), i.e. non-uniform rational B-splines. They are the basis for the further formation of surfaces, and then solid figures. The listed geometric objects ensure the proper design of parts, assembly units, and the development of technologies for their manufacture and operation. Therefore, the improvement of NURBS lines is an actual scientific and applied problem. Bezier curves are a separate type of NURBS lines that have certain advantages and disadvantages, in other words, their own sphere of rational use. This publication proposes a power-law parameterization of these curves that differs from the traditional linear parameterization. The article shows that in this case, not only the certain useful properties of Bezier lines are preserved, but also new ones are obtained, appropriate for the computer-aided design of many industrial products, in particular, in the field of mechanical engineering. This applies to the construction of compound contours of the first and second order of smoothness, that is, by tangent and curvature, for example, the convenience of including straight line segments in them. Mathematical processing of outlined geometric figures requires the solution of relevant scientific problems, which is the subject of further research in the field of computer geometric modeling and automated design of various industrial products. Also important is the task of generalizing the obtained theoretical results, their thorough practical verification, and implementation in real production.
References
Farin G. Curves and Surfaces for CAGD. A Practical Guide. San Francisco: Morgan Kaufmann Publishers, 2002. 521 p.
Ursu-Fischer N., Popescu D., Radu I. Spline interpolation with third-degree Bezier functions. Acta Technica Napocensis. Series: Applied Mathematics, Mechanics and Engineering. Cluj-Napoca: TUCN, 2018. Vol. 61. Issue II. P. 167–174.
Arnal A., Monterde J. Bezier surfaces with prescribed diagonals. Journal of Computational and Applied Mathematics. 2023. № 424. 115018. URL: https://www.sciencedirect.com/journal/journal-of-computational-and-applied-mathematics/vol/424/suppl/C (дата звернення: 25.03.2024).
Wang H., Zhu C. The design of Bezier surface through quintic Bezier asymptotic quadrilateral. Journal of Computational Mathematics. 2019. Vol. 37. № 5. P. 720–737. doi: 10.4208/jcm.1809-m2016-0761.
Фролов О.В. Наближення кривих Безьє ламаними лініями на основі алгоритмів розбиття опорного полігона. Наукові праці Донецького національного технічного університету. Серія «Інформатика, кібернетика та обчислювальна техніка». 2019. № 28–29. С. 97–103. doi: 10.31474/1996-1588-2019-1-28-97-103.
Ванін В.В., Вірченко Г.А., Яблонський П.М. До питання геометричного моделювання з використанням кривих Безьє. Прикладна геометрія та інженерна графіка. 2020. Вип. 98. С. 29–34. doi: 10.32347/0131-579x.2020.98.29-34.
Вірченко Г.А., Яблонський П.М. Деякі аспекти комп’ютерного геометричного моделювання з використанням кривих Безьє. Прикладні питання математичного моделювання. 2020. Т. 3. № 1. С. 41–48. doi: 10.32782/2618-0340/2020.1-3.4.
Курєннов С.С., Барахов К.П., Барахова Г.С. Застосування кривих Безьє для опису форми конструкції при оптимізації клейового з’єднання. Системні дослідження та інформаційні технології. 2023. № 2. С. 127–138. doi: 10.20535/SRIT.2308-8893.2023.2.09.