EVALUATION OF THE EFFECTIVENESS OF THE SIRV MODEL FOR EPIDEMIC RESEARCH IN THE CONTEXT OF THE COVID-19 PANDEMIC IN THE RIVNE REGION

Authors

DOI:

https://doi.org/10.32782/mathematical-modelling/2024-7-1-3

Keywords:

SIRV model, effectiveness assessment, epidemic, COVID-19, pandemic, infectious diseases

Abstract

Public health’s significance is underscored by the challenges posed by infectious diseases, with the COVID-19 pandemic highlighting the vital need for robust health systems. The dynamic nature of virus transmission, characterized by fluctuating infection rates and the emergence of new variants, necessitates a comprehensive approach to public health management. The SIRV model stands as a pivotal analytical tool, enabling researchers and the government to simulate scenarios that examine the impact of vaccination campaigns on controlling disease spread. By integrating vaccination into the classical Susceptible-Infected-Recovered (SIR) framework, the SIRV model offers a nuanced understanding of how immunization efforts can alter disease dynamics. This model accounts for the vaccinated segment of the population, introducing a critical variable into the examination of public health strategies. Through mathematical simulations, the SIRV model can predict outcomes of various vaccination rates, offering invaluable insights for planning purposes. As vaccination emerges as a key defense mechanism against infectious diseases, models like SIRV are essential for strategic health planning. They not only provide a theoretical framework for understanding the potential trajectory of diseases but also facilitate the optimization of resource allocation to achieve the highest possible level of community immunity. Moreover, the adaptability of the SIRV model to incorporate additional variables, such as vaccine efficacy and waning immunity, enables a more accurate and realistic projection of public health outcomes. In the broader context of global health, the insights derived from the SIRV model underscore the importance of vaccination in disease containment efforts. As the world continues to grapple with the COVID-19 pandemic and prepares for future health crises, the role of predictive modeling in informing public health decisions becomes increasingly apparent. The SIRV model, with its capacity to simulate the complex interplay between vaccination and disease spread, serves as a testament to the power of mathematical modeling in enhancing our understanding of infectious diseases. It highlights the necessity of preemptive planning and targeted intervention strategies in mitigating the impact of current and future pandemics.

References

A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1927. Т. 115, № 772. С. 700–721. https://doi.org/10.1098/rspa.1927.0118 (дата звернення: 22.02.2024).

Masaaki I. Optimal Strategies for Vaccination using the Stochastic SIRV Model. Transactions of the Institute of Systems, Control and Information Engineers. 2012. Т. 25, № 12. С. 343–348. https://doi.org/10.5687/iscie.25.343 (дата звернення: 22.02.2024).

Mathematical Modeling and Stability Analysis of a SIRV Epidemic Model with Non-linear Force of Infection and Treatment / M. O. Oke та ін. Communications in Mathematics and Applications. 2019. Т. 10, № 4. https://doi.org/10.26713/cma.v10i4.1172 (дата звернення: 22.02.2024).

Clinical Progression of COVID-19 Patient with Extended Incubation Period, Delayed RT-PCR Time-to-positivity, and Potential Role of Chest CT-scan / Burhan, E. та ін. Acta medica Indonesiana. 2020. Т. 52. № 1. Р. 80–83.

Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis / S. Yang та ін. Annals of Translational Medicine. 2020. Т. 8. № 4. Р. 128. https://doi.org/10.21037/atm.2020.02.66 (дата звернення: 22.02.2024).

Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases / J. Mossong et al. PLoS Medicine. 2008. Т. 5. № 3. Р. e74. https://doi.org/10.1371/journal.pmed.0050074 (дата звернення: 22.02.2024).

Bootsma M.C.J., Ferguson N.M. The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proceedings of the National Academy of Sciences. 2007. Т. 104. № 18. Р. 7588–7593. https://doi.org/10.1073/pnas.0611071104 (дата звернення: 22.02.2024).

Rocklöv J., Sjödin H., Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. Journal of Travel Medicine. 2020. Т. 27. № 3. https://doi.org/10.1093/jtm/taaa030 (дата звернення: 22.02.2024).

Multiple Estimates of Transmissibility for the 2009 Influenza Pandemic Based on Influenzalike-Illness Data from Small US Military Populations / P. Riley та ін. PLoS Computational Biology. 2013. Т. 9. № 5. Р. e1003064. https://doi.org/10.1371/journal.pcbi.1003064 (дата звернення: 22.02.2024).

Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia / Q. Li et al. New England Journal of Medicine. 2020. Т. 382. № 13. Р. 1199–1207. https://doi.org/10.1056/nejmoa2001316 (дата звернення: 22.02.2024).

Serial Interval of COVID-19 among Publicly Reported Confirmed Cases / Z. Du et al. Emerging Infectious Diseases. 2020. Т. 26. № 6. Р. 1341–1343. https://doi.org/10.3201/eid2606.200357 (дата звернення: 22.02.2024).

CDC Weekly C. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) – China, 2020. China CDC Weekly. 2020. Т. 2. № 8. Р. 113–122. https://doi.org/10.46234/ccdcw2020.032 (дата звернення: 22.02.2024).

The Complex Systems for Conflict Interaction Modelling to Describe a Non-Trivial Epidemiological Situation / S. Bekesiene et al. Mathematics. 2022. Т. 10. № 4. Р. 537. https://doi.org/10.3390/math10040537 (дата звернення: 22.02.2024).

Nesteruk I. Simulations of new COVID-19 pandemic waves in Ukraine and in the world by generalized SIR model. System research and information technologies. 2022. № 2. Р. 94–103. https://doi.org/10.20535/srit.2308-8893.2022.2.07 (дата звернення: 22.02.2024).

Коронавірус COVID-19: загальна статистика. Мінфін. URL: https://index.minfin.com.ua/ua/reference/coronavirus (дата звернення: 22.02.2024).

Published

2024-08-02