APPLICATION OF IMAGE PROCESSING AND WAVELET ANALYSIS FOR EXTRACTING WAVINESS AND ROUGHNESS PROFILES FROM METALLIC SURFACE PROFILE GRAPHS
DOI:
https://doi.org/10.32782/mathematical-modelling/2024-7-2-10Keywords:
image processing, wavelet analysis, waviness, roughnessAbstract
The study of surface quality surface quality is an important engineering issue. Technological problems are among the of the most important, since their successful solution ultimately determines the performance performance of the designed products. One of these problems is to assess the impact of roughness, waviness, and deviations in the shape of the surfaces of parts on their functional properties [1–3]. The operational properties of machines and devices, their accuracy, reliability, and durability depend on the quality of the surface, its microgeometric and physical-mechanical state [1–3]. The quality of the of the treated surface is characterized by two main features: physical and mechanical properties of the metal surface layer and the degree of surface roughness [1–3]. The study of surface quality is an extremely important task in the context of technical and production processes. To understand the relationship between the characteristics of roughness, waviness and deviations in the shape of the surface of parts and their impact on functional properties is not only important, but also necessary to ensure reliable operation of machines and devices. After all, these factors determine the performance of products and their durability. To study of surface roughness and waviness are widely used to study of image processing and mathematical analysis, including wavelet analysis, which makes it possible to highlight the key characteristics of profile graphs. The use of wavelets in conjunction with digital technologies allows us to distinguish structures of different nature with high accuracy structures of different nature, which is important for understanding the processes that affect wear resistance, strength, and functionality of parts. Thus, the methods of of roughness analysis play a key role in improving production processes and ensuring high quality standards for machined surfaces.
References
Твердохліб Ю.В., Дубровін В.І., Каморкін П.А. Метод виділення профілів хвилястості та шорсткості профілограм металевих поверхонь за допомогою вейвлет-аналізу. Адаптивні системи автоматичного управління. 2015. № 1 (26). С. 26–31.
Tverdohleb J.V., Dubrovin V.I. Processing of ECG signals based on wavelet transformation. International journal of advanced science and technology. 2011. Vol. 30. P. 73–81.
Дубровін, В.І., Твердохліб, Ю.В. Спосіб визначення оптимального вейвлету для аналізу сигналів на основі дослідження його амплітудно-частотної характеристики. Запорізький національний технічний університет. Пат. 90102 Україна, МПК6 G01R 23/16. Заявл. 20.12.13; опубл. 12.05.14, бюл. № 9. 3 с.
Lee B., Juan H., Yu S. A study of computer vision for measuring surface roughness in the turning process. Advanced Manufacturing Technology. 2002. Vol. 19. P. 295–301.
Castejo’n M., Alegre E., Barreiro J. Herna’ndez L.K. On-line tool wear monitoring using geometric descriptors from digital images. International Journal of Machine Tools & Manufacture. 2007. Vol. 47. Р. 1847–1853.
Barreiro J., Castejo’n M. Alegre E. Herna’ndez L.K. Use of descriptors based on moments from digital images for tool wear. International Journal of Machine Tools & Manufacture. 2008. Vol. 48. Р. 1005–1013.
Barreiro J., Alaiz R., Alegre E., Ablanedo D. Surface finish control in machining processes using textural descriptors based on moments. Proceedings of 6th International Conference of DAAAM Baltic Industrial Engineering. Tallinnn-Estonia, 24–26 April 2008. Tallinnn, 2008. P. 209–214.
Bharati M.H., Liu J.J., MacGregor J.F., Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems. 2004. Vol. 72 (1). P. 57–71.
Mallat S. Theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 1989. Vol. 11. P. 674–693.
Huang K., Aviyente S. Information-theoretic wavelet packet subband selection for texture classification. Signal Processing. 2006. Vol. 86 (7). P. 1410–1420.
Hiremath P.S., Shivashankar, S. Wavelet based co-occurrence histogram features for texture classification with an application to script identification in a document image. Pattern Recognition Letters. 2008. Vol. 29. P. 1182–1189.
Kim S.C., Kang, T.J. Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition. 2007. Vol. 40 (4). P. 1207–1221
Dettori L., Semler L. A comparison of wavelet, ridge let, and curvelet-based texture classification algorithms in computed tomography. Computers in Biology and Medicine. 2007. Vol. 37. P. 486–498.
Arivazhagan S., Ganesan L. Texture segmentation using wavelet transform. Pattern Recognition Letters. 2003. Vol. 24 (16). P. 3197–3203.
Latif-Ameta A., Ertuzun A. Ercil, A. An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image and Vision Computing. 2000. Vol. 18. P. 543–553.
Lin H.D. Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image and Vision Computing. 2007. Vol. 25 (11). P. 1785–1801.
Grzesik W., Brol S. Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials. Journal of Materials Processing Technology. 2009. Vol. 209 (5). P. 2522–2531.
Твердохліб Ю.В., Дубровін В.І. Вейвлет-перетворення в задачі дослідження профіля металевих поверхонь. Інформаційні технології в металургії та машинобудуванні: зб. тез наук.-техн. конф. Дніпро: НметАУ, 2014. С. 6–7.
Твердохліб Ю.В. Вейвлет-перетворення в задачі розділення профілю поверхні. Збірник тез ХХ Міжнародної наукової конференції студентів, аспірантів та молодих учених (секція «Обчислювальна математика та кібернетика»). Ломоносов, 2013. С. 61–62.
Дубровін В.І., Твердохліб Ю.В. Дослідження змін ентропії та енергії на етапах декомпозиції сигналу. Радіоелектроніка, інформатика, управління. 2013. № 2 (29). С. 54–58.
Sun W., Mukherjee R., Stroeve P., Palazoglu A., Romagnoli, J.A. A multi- resolution approach for line-edge roughness detection. Microelectronic Engineering. 2009. Vol. 86 (3). P. 340–351.
Siqian Yan, Hua Yao, Haiyi Bian. Multi-Feature Extraction of Metal Cracks using Based on Wavelet Neural Network. Journal of Physics: Conference Series (JPCS). 2023. Vol. 2467. Р. 1–7.