NUMERICAL MODELLING OF CONTACT INTERACTION STAMPS AND RUBBER-CORD STRIP

Authors

  • S.I. HOMENYUK
  • S.M. GREBENYUK
  • N.I.-V. MANKO
  • O.G. SPYTSIA

DOI:

https://doi.org/10.32782/KNTU2618-0340/2021.4.2.2.6

Keywords:

contact problem, stress-strain state, moment scheme, finite element method, “infinite” finite element, rubber-cord material

Abstract

Rubber-cord materials consisting of a weakly compressible rubber matrix and metal fibers have been considered. The presence of different materials makes it impossible to direct calculations for the vast majority of problems therefore before this by known ratios has been carried out homogenization of these materials. For this purpose, the relations for effective elastic stable fibrous composites constants on the formulas of Vanin G. A. have been used. The moment scheme of finite elements has been used to determine the stress-strain state of the body. In the contact zone, the sampling has been performed by spatial hexahedral finite elements of finite dimensions. For modeling of infinite dimensions of the homogenized material, according to the moment scheme of a finite element, are used the special approximating functions, which allow to display the finite dimensions of the finite element in the infinite global coordinate system. For the developed finite element, fiber reinforcement takes place in planes parallel to one of the faces of the element, which has an infinite size. Modeling of contact interaction of stamps with multilayer environments has been carried out on the basis of the finite element method. The solution of the problem has been carried out in the iterative process under the condition of non-penetration of one body into another, which was provided with the selection of the vector of additional load. A number of contact problems for multilayer environments have been solved with the help of the MIRELA + software package. The stress-strain state in the conditions of contact with the system of stamps in the form of two elliptical paraboloids has been determined for the three-layer rubber-cord strip. The distribution of maximum compressive (contact) stresses and deformations of the side surface of the strip for different values of the volume fraction of fiber in the composite has been studied. A comparison of the stress-strain state of the rubber cord strip at different distances between stamps and different schemes of laying fibers in the layers of the strip has been make.

References

Edip K., Sheshov V., Bojadjieva J., Demir A., Ozturk H. Development of infinite elements for simulation of unbounded media. Građevinski materijali i konstrukcije. 2018. Vol. 61, № 3. P. 3–13.

Medina F. Taylor R. L. Finite element techniques for problems of unbounded domains. International journal for numerical methods in engineering. 1983. Vol. 19, № 8. P. 1209–1226.

Zienkiewicz O. C., Taylor R. L., Too J. M. Reduced integration technique in general analysis of plates and schells. International Journal for Numerical Methods in Engineering. 1971. Vol. 3, № 3. P. 275–290.

Curnier A. A static infinite element. International journal for numerical methods in engineering. 1983. № 19(10). Р. 1479–1488.

Beer G. ‘Infinite domain’ elements infinite element analysis of underground excavations. International journal for numerical and analytical methods ingeomechanics. 1983. Vol. 7, № 1. P. 1–7.

Чопоров С. В., Манько Н. І.–В., Спиця О. Г., Гребенюк С. М. Матриця жорсткості «напівнескінченного» скінченного елемента для слабкостисливого матеріалу на основі моментної схеми. Вісник Запорізького національного університету. Фізико-математичні науки. 2019. № 1. С. 98–106. DOI: 10.26661/2413-6549-2019-1-13.

Амбарцумян С. А. Общая теория анизотропных оболочек. Москва : Наука, 1974. 448 с.

Ван Фо Фы Г. А. Упругие постоянные и напряженное состояние стеклоленты. Механика полимеров. 1966. № 4. С. 593–602.

Manko N. I., Spytsia O. G. The stiffness matrix of infinite hexahedral finite element for fiber composite material based on the moment scheme. Mathematical and computer modelling of engineering systems: monograph. Riga : Baltija Publishing. 2020. C. 81–93. URL:http://www.baltijapublishing.lv/omp/index.php/bp/catalog/book/89.

Published

2023-04-13