STOCHASTIC MODELING OF THE TOPOGRAPHY OF THE WORKING SURFACE OF PRODUCTS AT FINISHING OPERATIONS
DOI:
https://doi.org/10.32782/2618‐0340/2020.1‐3.23Keywords:
stochastic model, grinding, surface topography, dynamic systemAbstract
It is proposed to improve the grinding dynamics model, in which each abrasive grain is considered a distinct cutting edge with random characteristics of shape and location on the grinding wheel's surface. Because vibrations inevitably occur in the dynamic system during cutting, which requires additional research. In the model, the machining process is depicted as micro-cutting with abrasive grains that are randomly distributed on the grinding wheel's surface. The geometric parameters of the grains are also random. Because of modeling surface textures after processing, distribution of cutting forces, dynamic deviations of the tool are received. Their spectral characteristics are constructed, which allows the estimation of the influence of processing modes and parameters of the technological system on vibrations. It is shown that vibrations are excited in the system both at the frequencies of external excitation (grain frequency) and at the natural frequencies of the elastic dynamic system characteristic of a regenerative excitation source. It is established that at low rigidity of technological system self-oscillations of chatter type with big amplitude are broken because of the mechanism of regenerative excitation from grain to grain at frequencies multiple of natural frequencies of oscillations leading to loss of quality of processing of working surfaces of products and strengthening of tool wear. The adequacy of the constructed model was checked by comparing the simulation results with the experimental results. For this purpose, the treatment of the flat surface of the material of the part with a wear-resistant coating with a grinding wheel was considered. The appearance of the surface after passing the tool was obtained using an improved model. The final microrelief of the surface after grinding shows the effectiveness of the constructed model and its ability to provide the topography of the treated surfaces of products.
References
Воронов С. А., Ма Вэйдун. Влияние геометрии абразивного зерна на силы резания при шлифовании. Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение». 2017. № 5. С. 5263.
Komanduri R. Machining and Grinding: A Historical Review of the Classical Papers. Applied Mechanics Reviews. 1993. Vol. 46. № 3. P. 80132. DOI: https://doi.org/10.1115/1.3121404
Malkin S., Guo C. Grinding Technology: Theory and Applications of Machining with Abrasives. New York: Industrial Press Publ, 2008. 372 p.
Zhen B. H., Ranga K. On the Mechanics of the Grinding Process – Part I. Stochastic Nature of the Grinding Process. International Journal of Machine Tools & Manufacture. 2003. Vol. 43. P. 1579-1593.
Маслов Е. Н. Теория шлифования материалов. М. : Машиностроение, 1974. 318 с.
Кащеев В. Н. Абразивное разрушение твердых тел. М.: Наука, 1970. 245 с.
Грабченко А. И., Доброскок В. Л., Федорович В. А. 3D моделирование алмазно-абразивных инструментов и процессов шлифования. Харьков : НТУ «ХПИ», 2006. 362 с.8. Грабченко А. И., Федорович В. А. 3D процессы алмазно-абразивной обработки. Харьков : НТУ «ХПИ», 2008. 349 с.
Оборский Г. А., Дащенко А. Ф., Усов А. В., Дмитришин Д. В. Моделирование систем : монография. Одесса : Астропринт, 2013. 664 с.
Stephen H. C., William D. M. Random Vibration in Mechanical Systems. New York: Academic Press, 2014. 176 p.
Hecker R., Liang S. Y. Predictive Modeling of Surface Roughness in Grinding. International Journal of Machine Tools & Manufacture. 2003. Vol. 43. P. 755-761.
Stepien P. A Рrobabilistic Model of the Grinding Process. Applied Mathematical Modelling. 2009. Vol. 33. № 10. P. 3863-3884.
Holtermann R., Schumann S., Menzel A. Modelling Simulation and Experimental Investigation of Chip Formation in Internal Traverse Grinding. Production Engineering Research and Development. 2013. Vol. 7. P. 251-263.
Ioan D. M., Brian R. W., Dimitrov B. Tribology of Abrasive Machining Processes. Norwich, NY : William Andrew Inc, 2012. 600 p.
Hao Nan Li, Tian Biao Yu, Li Da Zhu. Analytical Modeling of ground Surface Topography in Monocrystalline Silicon Considering the Ductile-Regime Effect. Archives of Civil and Mechanical Engineering. 2017. Vol. 17, № 4. P. 880-893.
Young P. L., Brackbill T. P., Kandlikar S. G. Estimating Roughness Parameters Resulting From Various Machining Techniques for Fluid Flow Applications. Proceedings of the Nanochannels, Microchannels and Minichannels: Fifth International Conference (Mexico, Puebla, June 18-20, 2007), Puebla: ASME, 2007, pp. 827-836.
Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge : Cambridge University Press, 2000. 286 p.
Altintas Y., Stepan G., Merdol D., Dombovari Z. Chatter Stability of Milling in Frequency and Discrete Time Domain. CIRP Journal of Manufacturing Science and Technology. 2008. Vol. 1, P. 35-44.
Riviére E., Stalon V., Van den Abeele O., Filippi E., Dehombreux P. Chatter Detection Techniques Using Microphone. Proceedings of the Theoretical and Applied Mechanics: 56-th National Congress on (Tokio, March, 7-9, 2007). Tokio, 2006. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.612.4595&rep=rep1&type=pdf
Brecher C., Esser M., Witt S. Interaction of Manufacturing Process and Machine Tool. CIRP Annals - Manufacturing Technology. 2009. Vol. 58. P. 588-607.
Zhenyu Han, Hongyu Jin, Maoyue Li, Hongya Fu. An Open Modular Architecture Controller Based Online Chatter Suppression System for CNC Milling. Mathematical Problems in Engineering. 2015. Vol. 2015. 13 p. DOI: https://doi.org/10.1155/2015/985837.