SIMULATION OF A SHIP COMPLEX ELECTRIC POWER TURBOCHARGER INSTALLATION IN TRANSITION MODES
DOI:
https://doi.org/10.32782/2618-0340/2019.2-2.1Keywords:
turbocharger system, additional supercharging circuit, simulation modeling, control system, marine power plantAbstract
One of the promising directions of exhaust gas heat utilization by using turbocharger systems in which the exhaust gas energy is used directly to drive a gas turbine that transmits energy to the supercharger drive or to the generator drive is considered. The mathematical model of the marine integrated turbocharger unit as an object of control is constructed, the interconnections between the individual components of the complex are considered. Differential equations describing dynamic processes in a turbocharged diesel engine have been obtained, based on the conditions of equilibrium of engine and turbocharger torques and taking into account changes in the amount of air and gas in the intake and exhaust manifolds. The mathematical model of the diesel engine has been improved taking into account the new additional supercharging circuit, for the implementation of which it is proposed to use an asynchronous machine with a massive rotor. In consequence of the linearization of nonlinear functional dependencies and the transition to relative units, we obtained a model of the system in the state space, which allows to simulate processes in the system under any transient modes and to analyze the efficiency of control systems built on different principles. The PID controller is used to adjust the position of the fuel pump rail. It is substantiated that it is sufficient to use a PD controller to operate the system with a hybrid turbocharger on an additional boost circuit. The processes undergoing at the ship electric power systems with hybrid turbocharger units in transient modes (with external load changes) are considered, and the efficiency of using hybrid turbocharger plants by simulating real ship installation is investigated. The results of simulation of processes in the system under the conditions of transient mode (when sketching and dumping of external load) in comparison with similar processes for a typical engine are presented. Conducting a simulation experiment confirmed the effectiveness of the proposed design solutions. It has been determined that improving the efficiency of marine power systems is possible due to the introduction of the latest exhaust gas heat recovery systems, provided that the proper control systems are used.
References
Седаков Л. П., Баракан Г. Х., Калинина Л. И. Резервы повышения экономичности современных судовых дизельных энергетических установок. Судостроение. 1987. № 11. С. 20−25.
Рябенький М. В., Короленко О. В., Вороненко С. В., Короленко Є. О. Головний двигун та суднова генераторна система в когенераційній установці судна. Електротехнічні та комп’ютерні мережі. 2017. № 26(102). С.9−16.
Вороненко С. В., Іщенко І. М., Рудакова Г. В., Лебеденко Ю. А. Математична модель суднової комплексної електроенергетичної турбокомпресорної установки. Вісник Херсонського національного технічного університету. 2019. № 2 (69), Ч. 2. С. 31−38.
Shiraishi K., Ono Y., Sugishita K. Development of Large Marine Hybrid Turbocharger for Generating Electric Power with Exhaust Gas from the Main Engine. Mitsubishi Heavy Industries Technical Review. 2010. Vol. 47, № 3. P. 53−58.
Малыш А. Н. Математическая модель дизель-генератора с турбонаддувом. Системи обробки інформації. 2004. № 1 (29). С. 219−224.
Ким Д. П. Теория автоматического управления. Т.2. Многомерные, нелинейные, оптимальные и адаптивные системы. Москва: ФИЗМАТЛИТ, 2004. 464с.
Марков В. А., Поздняков Е. Ф., Фурман В. В., Плахов С. В. Моделирование системы автоматического регулирования частоты вращения дизельного двигателя. Известия высших учебных заведений. Машиностроение. 2019. № 7. С. 35–46. DOI: 10.18698/0536-1044-2019-7-35-46.
Дьяконов В. П. MATLAB 6.5 SP1/7 + Simulink 5/6 в математике и моделировании. Серия «Библиотека профессионала». М.: СОЛОН-Пресс, 2005. 576 с.