DECOMPOSITION IN THE PROBLEM OF DYNAMIC POSITIONING

Authors

  • P.V. KASHTALYAN
  • S.A. ROZHKOV
  • T.I. TERNOVAYA

DOI:

https://doi.org/10.32782/2618-0340-2018-2-72-80

Keywords:

dynamic positioning, decomposition, power supply of the vessel

Abstract

This paper is devoted to solving the problem of decomposition of the control system for stabilization of the coordinates of a marine vessel. The article discusses the issue of building a mathematical model of a ship as a dynamic object in the field of perturbing forces, and a generalized model of the object and its decomposition are obtained. Modern technologies and tasks of navigation put forward the task of positioning ships. Expansion of work on the shelf, maintenance of platforms and operational work requires precise positioning with considerable excitement. More and more dynamic positioning (DP) applications are emerging, new classes of vessels for these applications are emerging, and DP systems themselves are becoming more widespread and cheaper. Thus, the development of methods and means of improving the accuracy of positioning is relevant. The paper shows that this task is related to tasks with distributed parameters, and the ship model is of the second order. The task is to analyze the regulation methods used for dynamic positioning. In spite of the significant efforts of the developers and the large number of completed projects, it is not possible to achieve a long vessel retention during a wave in a given position. The reason for this is not only the lack of power supply of the ships used. Numerous studies in the development of regulatory systems do not yet provide the expected result. Based on the current situation, the article attempts to analyze the methods for constructing regulatory systems and develop an algorithm for accurately positioning a vessel at a wave energy not exceeding the electrical capacity of the object (vessel). As a result of the study, the following conclusions were made: 1) the problem of dynamic positioning is a task with distributed parameters; 2) the description of the vessel as an object of regulation is a second-order partial differential equation; 3) decomposition of the task of controlling the coordinates of the floating means allows you to select a separate dynamic positioning subsystem; 4) given that the use of modern methods of regulation does not allow creating systems capable of maintaining the necessary positioning accuracy for a long time, analysis of the methods of regulation used is required.

References

Шостак В. П. Динамическое позиционирование плавучих объектов. Чикаго, Мегатрон, 2010. 130 с.

Guidelines for vessels with dynamic positioning systems. Оngsberg K-Pos DP IMO, International maritime organization MSC/Circ. 645 (1994) URL:

http://imo.udhb.gov.tr/dosyam/EKLER/MSC-Circ.645.pdf

Быковский А. В. и др. Повышение точности инерциальных навигационных систем с использованием внешней информации. Москва: МГТУ, 1989. 148 с.

Фрейдзон И. P., Филлипов Л. Г. Автоматические системы динамического удержания буровых судов. Судостроение за рубежом. 1980. № 1. С. 13-27.

Integrated Dynamic Positioning System (DPS-1) Technical Description. (2018) URL: www.emi-marine.com.

Thor I. Fossen. (2005) A nonlinear unified state-space model for ship maneuvering and control in a seaway. Journal of Bifurcation and Chaos. 15 (9), 2717-2746. DOI: 10.1142/S0218127405013691

Чижиумов С. Д. Основы динамики судов на волнении. Комсомольск-на-Амуре: ГОУВПО "КнАГТУ", 2010. 110 с.

Thor I. Fossen, Tristan Perez. (2009) Kalman Filtering for Positioning and Heading Control of Ships and Offshore Rigs. IEEE Сontrol Systems Magazine. 29, 6, 32-46.

Зубова A. А. Моделирование гидродинамического взаимодействия судов на основе методов вычислительной гидродинамики: дисс. … канд. техн. наук. Санкт-Петербург, 2015.

Будак Б. М., Фомин С. В.Кратные интегралы и ряды. Москва: Наука, 1965. 607 с.

Asgeir J. Sørensen. Marine Control Systems Propulsion and Motion Control of Ships and Ocean Structures. Lecture Notes. Report UK-13-76. Trondheim: Department of Marine Technology Norwegian University of Science and Technology, 2013. 525 p.

Лукомский Ю. А., Чугунов В.С. Системы управления морскими подвижными объектами. Ленинград: Судостроение, 1988. 272 с.

Мирошников А. Н., Антоненко В. П. (2018) Системы динамического позиционирования: новые задачи и тенденции развития. URL: http://korabel.ru/news/comments/_dinamichtskogo_pozicionrovaniya_novye_zadachi_i_tendencii_razvitiya_2html

Справочник по теории автоматического управления / Под ред. A.A. Красовского. Москва: Наука. Гл. ред. физ. -мат. лит., 1987.712 с.

Published

2023-10-13