CALCULATION MODELS FOR STATIC ANALYSIS OF THREE-DIMENSIONAL NANOCOMPOSITES WITH SYSTEMS OF INCLUSIONS
DOI:
https://doi.org/10.32782/2618-0340/2019.2-2.3Keywords:
three-dimensional composites and nanocomposites, interface surfaces, classical and non-classical contact conditions, finite and boundary element methodsAbstract
Approach based on the principles of continuum mechanics is used to estimate the mechanical properties of three-dimensional composites and nanocomposites. Mechanical properties of composites and nanocomposites are considered in the assumptions of linear elasticity. To describe the nanoscale contact between matrices and inclusions on the interface surface, the conditions of ideal contact and non-classical Gurtin-Murdoch conditions are used. The interface surface is regarded as an elastic membrane with its own elastic characteristics and a given surface tension. The special algorithm for numerical solution of resolving equations is developed when the integration area is a surface of rotation. In this case, static problems of determining the elastic characteristics of nanocomposites are reduced to systems of one-dimensional singular integral equations. Different types of representative volume elements are considered. Finite and boundary element methods are used in numerical estimation of the mechanical properties of composite and nanocomposite materials. For the three-dimensional problem, the results obtained using the finite element method (hexagonal representative volume element) and the boundary element method (cylindrical representative volume element) are compared. The finite element method is used to find out the stress-strain state of various representative volume elements of threedimensional nanocomposites. The influence of shapes and relative sizes of inhomogeneities and matrices of representative volumes on the effective elasticity modulus of nanocomposites is studied. Matrices in the form of cube and cylinder of finite sizes and inhomogeneity in the form of balls, spheres, cylinders, fibers and tubes are considered. Finite element-based calculation models are generalized to composites with distributed nanoinclusions of random and ordered orientation. The resulting models create an informative base for nanocomposites synthesis technologies with improved deformable and strength characteristics.
References
Gurtin M. E., Murdoch A. I. A Continuum Theory of Elastic Material Surfaces. Archive of Rational Mechanics Analysis. 1975. Vol. 57. P. 291323.
Mykhas’kiv V. V., Stasyuk B. M. Effective Elastic Properties of 3D Composites with Short Curvilinear Fibers: Numerical Simulation and Experimental Validation. Solid State Phenomena. 2017. Vol. 258. P. 452455.
Kushch V. I. Stress Field and Effective Elastic Moduli of Periodic Spheroidal Particle Composite with Gurtin-Murdoch Interface. International Journal of Engineering Science. 2018. Vol. 132. P. 7996. DOI: 10.1016 /j.ijengsci. 2018.08.00.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E. Multi-Domain Boundary Element Method for Axisymmetric Problems in Potential Theory and Linear Isotropic Elasticity. WIT Transactions on Engineering Sciences. 2019. Vol. 122. P. 1325. DOI: 10.2495/BE410021.
Luo J., Wang X. On the anti-Plane Shear of an Elliptic Nanoinhomogeneity. European Journal of Mechanics. Solids. 2009. Vol. 28. P. 926934.
Mogilevskaya S. G., Crouch S. L., Stolarski H. K. Multiple Interacting Circular Nanoinhomogeneities with Surface/Interface Effects. Journal of the Mechanics and Physics of Solids. 2008. Vol. 56. P. 22982327.
Tian L., Rajapakse R. K. Elastic Field of an Isotropic Matrix with a Nanoscale Elliptical Inhomogeneity. International Journal of Solids and Structures. 2007. Vol. 44. P. 79888005.
Javili A., Steinmann P. A Finite Element Framework for Continua with Boundary Energies. Computer Methods in Applied Mechanics and Engineering. 2010. Vol. 199. P. 755765.
Dong C. Y., Pan E. Boundary Element Analysis of Nanoinhomogeneities of Arbitrary Shapes with Surface and Interface Effects. Engineering Analysis with Boundary Elements. 2011. Vol. 35. P. 9961002.
Bakr Adib A. The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems. Springler Verlag Berlin Heidelberg New York Tokyo, 1986. 213 р.
Balas J., Sladek J., Sladek V. Stress Analysis by Boundary Elements. Studies in Applied Mechanics. Elsevier, 1989. Vol. 23.
Karaiev A., Strelnikova E. Singular Integrals in Axisymmetric Problems of Elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2019. Vol. 122. P. 1325. DOI.org/10.1142/S1793962320500038
Караєв А. О., Стрельнікова О. О. Сингулярні інтеграли в аксіально-симетричних задачах теорії потенціалу. Прикладні питання математичного моделювання. 2018. № 1. С. 1018.
Еселева Е. В., Гнитько В. И., Стрельникова Е. А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Проблемы машиностроения. 2006. №1. С.105118.
Gnitko V., Naumemko Y., Strelnikova E. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles. International Journal of Applied Mechanics and Engineering. 2017. Vol. 22. Issue 4. Р. 867881.
Дегтярьов К. Г., Гнітько В. І., Стрельнікова О. О., Тонконоженко А. М. Розрахункові моделі на основі методів скінчених та граничних методів для аналізу механічних властивостей тривимірних нанокомпозитів. Прикладні питання математичного моделювання. 2018. № 2. С. 4354. DOI: https://doi.org/10.32782/2618-0340-2018-2-43-54
Le M.-T., Huang S.-C. Modeling and Estimating the Effective Elastic Properties of Carbon Nanotube Reinforced Composites by Finite Element Method. Journal of Engineering Technology and Education. 2014. Vol. 11. № 2. Р. 145158.
Miller R. E., Shenoy V. B. Size-Dependent Elastic Properties of Nanosized Structural Elements. Nanotechnology. 2000. Vol. 11. P. 139147.
Gao W., Yu S. W., Huang G. Y. Finite Element Characterization of the Size Dependent Mechanical Behavior in Nanosystems. Nanotechnology. 2006. Vol. 17. P. 11181122.