РОЗРАХУНКОВІ МОДЕЛІ ДЛЯ АНАЛІЗУ ЕФЕКТИВНИХ ХАРАКТЕРИСТИК ТРИВИМІРНИХ НАНОКОМПОЗИТІВ ІЗ СИСТЕМАМИ ВКЛЮЧЕНЬ
DOI:
https://doi.org/10.32782/2618-0340/2019.2-2.3Ключові слова:
тривимірні композити та нанокомпозити, поверхні інтерфейсу, класичні та некласичні умови контакту, методи скінченних та граничних елементівАнотація
Для опису механічних властивостей тривимірних композитів та нанокомпозитів використовуються підходи, засновані на співвідношеннях механіки суцільного середовища. За припущеннями лінійної пружності розглянуті механічні властивості композиційних матеріалів та нанокомпозитів. Застосовуються умови ідеального контакту і некласичні умови Гуртіна-Мердока для опису нанорозмірного контакту між матрицею та включеннями на поверхні розділу, яка розглядається як еластична мембрана з власними пружними характеристиками та заданим поверхневим натягом. Розглянуті різні типи представницьких комірок. Для числової симуляції механічних властивостей композитних та нанокомпозитних матеріалів використовуються методи скінченних та граничних елементів. У тривимірному формулюванні здійснено порівняння результатів, отриманих при використанні методу скінченних елементів (гексагональний репрезентативний об’ємний елемент) і методу граничних елементів (циліндричний репрезентативний об’ємний елемент). Метод скінченних елементів застосовано для визначення напружено-деформованого стану різних репрезентативних об'ємних елементів тривимірних нанокомпозитів. Розглядаються матриці у вигляді куба та циліндра скінченних розмірів та неоднорідності у вигляді куль, сфер, циліндрів, волокон та трубок. Базовані на МСЕ розрахункові моделі поширено на опис ефективних пружних властивостей композитів з розподіленими нановключеннями з випадковою та впорядкованою орієнтаціями. Метод скінченних елементів застосовано для визначення НДС різних репрезентативних об'ємних елементів тривимірних нанокомпозитів. Досліджено вплив форми і відносних розмірів неоднорідностей та матриць репрезентативного об’єму на ефективні модулі пружності нанокомпозитів. Отримані моделі створюють інформативну базу для технологій синтезування нанокомпозитів з вдосконаленими деформаційними і міцнісними характеристиками.
Посилання
Gurtin M. E., Murdoch A. I. A Continuum Theory of Elastic Material Surfaces. Archive of Rational Mechanics Analysis. 1975. Vol. 57. P. 291323.
Mykhas’kiv V. V., Stasyuk B. M. Effective Elastic Properties of 3D Composites with Short Curvilinear Fibers: Numerical Simulation and Experimental Validation. Solid State Phenomena. 2017. Vol. 258. P. 452455.
Kushch V. I. Stress Field and Effective Elastic Moduli of Periodic Spheroidal Particle Composite with Gurtin-Murdoch Interface. International Journal of Engineering Science. 2018. Vol. 132. P. 7996. DOI: 10.1016 /j.ijengsci. 2018.08.00.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E. Multi-Domain Boundary Element Method for Axisymmetric Problems in Potential Theory and Linear Isotropic Elasticity. WIT Transactions on Engineering Sciences. 2019. Vol. 122. P. 1325. DOI: 10.2495/BE410021.
Luo J., Wang X. On the anti-Plane Shear of an Elliptic Nanoinhomogeneity. European Journal of Mechanics. Solids. 2009. Vol. 28. P. 926934.
Mogilevskaya S. G., Crouch S. L., Stolarski H. K. Multiple Interacting Circular Nanoinhomogeneities with Surface/Interface Effects. Journal of the Mechanics and Physics of Solids. 2008. Vol. 56. P. 22982327.
Tian L., Rajapakse R. K. Elastic Field of an Isotropic Matrix with a Nanoscale Elliptical Inhomogeneity. International Journal of Solids and Structures. 2007. Vol. 44. P. 79888005.
Javili A., Steinmann P. A Finite Element Framework for Continua with Boundary Energies. Computer Methods in Applied Mechanics and Engineering. 2010. Vol. 199. P. 755765.
Dong C. Y., Pan E. Boundary Element Analysis of Nanoinhomogeneities of Arbitrary Shapes with Surface and Interface Effects. Engineering Analysis with Boundary Elements. 2011. Vol. 35. P. 9961002.
Bakr Adib A. The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems. Springler Verlag Berlin Heidelberg New York Tokyo, 1986. 213 р.
Balas J., Sladek J., Sladek V. Stress Analysis by Boundary Elements. Studies in Applied Mechanics. Elsevier, 1989. Vol. 23.
Karaiev A., Strelnikova E. Singular Integrals in Axisymmetric Problems of Elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2019. Vol. 122. P. 1325. DOI.org/10.1142/S1793962320500038
Караєв А. О., Стрельнікова О. О. Сингулярні інтеграли в аксіально-симетричних задачах теорії потенціалу. Прикладні питання математичного моделювання. 2018. № 1. С. 1018.
Еселева Е. В., Гнитько В. И., Стрельникова Е. А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Проблемы машиностроения. 2006. №1. С.105118.
Gnitko V., Naumemko Y., Strelnikova E. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles. International Journal of Applied Mechanics and Engineering. 2017. Vol. 22. Issue 4. Р. 867881.
Дегтярьов К. Г., Гнітько В. І., Стрельнікова О. О., Тонконоженко А. М. Розрахункові моделі на основі методів скінчених та граничних методів для аналізу механічних властивостей тривимірних нанокомпозитів. Прикладні питання математичного моделювання. 2018. № 2. С. 4354. DOI: https://doi.org/10.32782/2618-0340-2018-2-43-54
Le M.-T., Huang S.-C. Modeling and Estimating the Effective Elastic Properties of Carbon Nanotube Reinforced Composites by Finite Element Method. Journal of Engineering Technology and Education. 2014. Vol. 11. № 2. Р. 145158.
Miller R. E., Shenoy V. B. Size-Dependent Elastic Properties of Nanosized Structural Elements. Nanotechnology. 2000. Vol. 11. P. 139147.
Gao W., Yu S. W., Huang G. Y. Finite Element Characterization of the Size Dependent Mechanical Behavior in Nanosystems. Nanotechnology. 2006. Vol. 17. P. 11181122.