FORCED LIQUID OSCILLATIONS IN COAXIAL SHELLS

Authors

  • O.A. USATOVA
  • D.V. KRUTCHENKO

DOI:

https://doi.org/10.32782/2618-0340/2019.2-2.9

Keywords:

coaxial shells, boundary element method, forced oscillations, ideal incompressible fluid

Abstract

There are many unsolved problems regarding the strength of coaxial shells partially filled with an ideal incompressible fluid. In this regard, it becomes necessary to consider problems associated with studying the dynamic interaction of coaxial shells with a liquid. The problems of unsteady deformation of such shells are insufficiently studied and need more attention. Having determined the region of integration, supposed that the fluid is incompressible or weakly compressible, and using the boundary element method, we can solve the corresponding boundary value problem. Note that the fluid motion is vortex-free and this allows us to use the velocity potential, which satisfies the Laplace equation and the boundary conditions, both on rigid surfaces of the shell and on the fluid free surface, since the motion of the fluid volume is completely determined by the motion of its boundary surface. A description of the liquid behavior with the free surface can be summarized in set of dependencies, which are conditions of a kinematic and dynamic nature. Kinematic conditions can be considered as mechanical bonds that impose restrictions on the variations of the unknowns, dynamic conditions follow from the variational principle of Hamilton−Ostrogradsky, as natural ones. The fluid pressure will satisfy the Cauchy−Lagrange conditions. The walls of the shell can be considered as rigid ones. The natural frequencies of the fluid are essentially less than the natural frequencies of the elastic shell with the liquid. The effect of surface tension can be neglected, that is, the effect of surface tension on fluid vibrations is small. The calculations are performed, which make it possible to determine the frequencies and modes of liquid sloshing in coaxial shells. The forced oscillations of the fluid under the influence of horizontal harmonic, impulse and seismic loads are considered.

References

Лимарченко О. С. Нелинейные задачи динамики жидкости в резервуарах нецилиндрической формы. Киев: Адверта, 2017. 130 с.

Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Numerical modeling of spatial vibrations of cylindrical shells, partially filled with fluid. Computational Technologies. 2013. Vol. 18. № 2. P. 12–24.

Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Natural Vibrations and Stability of Elliptical Cylindrical Shells Containing Fluid. International Journal of Structural Stability and Dynamics. 2016. Vol. 16. № 10. DOI: 10.1142/S0219455415500765

Bochkarev S. A., Lekomtsev S. V., Matveenko V. P. Natural vibrations of loaded noncircular cylindrical shells containing a quiescent fluid. Thin-Walled Structures. 2015. Vol. 90. P. 12–22.

Бочкарёв С. А., Лекомцев С. В., Сенин А. Н. Анализ пространственных колебаний коаксиальных цилиндрических оболочек, частично заполненных жидкостью. Вычислительная механика сплошных сред. 2018. Т. 11. № 4. С. 448–462.

Мокін Б. І., Мокін В. Б., Мокін О. Б. Математичні методи ідентифікації динамічних систем. Вінниця : ВНТУ, 2010. 260 с.

Medvedovskaya T., Strelnikova E., Medvedyeva K. Free Hydroelastic Vibrations of Hydroturbine Head Covers. International Journal of Engineering and Advanced Research Technology. 2015. Vol. 1. № 1. P. 45–50.

Квасниця Г., Шинкаренко Г. Адаптивні апроксимації методу скінченних елементів для задач еластостатики. Вісник Львівського університету. Серія: Прикладна математика та інформатика. 2002. Вип. 5. C. 95–106.

Погрибный В. Б., Стрельникова Е. А., Шувалова Ю. С. Численное решение уравнений Навье-Стокса методом конечных объемов на структурированной сетке с гибкими границами. Вестник Херсонского национального технического университета. 2014. № 3(50). С.413–417.

Gnitko V., Marchenko U., Naumenko V., Strelnikova E. Forced Vibrations of Tanks Partially Filled with the Liquid Under Seismic Load. Proceedings of the Boundary Еlements and Other Mesh Reduction Methods: XXXIII International Conference (UK, New Forest, 28-30 June, 2011). 2011. Vol. 52: WIT, Transactions on Modelling and Simulation. P. 285–296.

Ibrahim R. A. Liquid Sloshing Dynamics. Theory and Applications. Cambrige: Cambrige University Press, 2005. 972 p.

Клигман Е. П., Клигман И. Е., Матвеенко В. П. Спектральная задача для оболочек с жидкостью. Прикладная механика и техническая физика. 2005. Т. 46. № 6. С. 128–135.

Науменко Ю. В., Розова Л. В., Стрельникова Е. А., Усатова О. А. Метод сингулярных интегральных уравнений в задачах колебаний жидкости в коаксиальных оболочках. Вісник Харківського національного університету імені В. Н. Каразіна. Серія: Математичне моделювання. Інформаційні технології. Автоматизовані системи управління. 2019. Вип. 41. С. 65–72.

Gnitko V., Naumemko Y., Strelnikova E. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles. International Journal of Applied Mechanics and Engineering. 2017. Vol. 22. Issue 4. Р. 867–881.

Еселева Е. В., Гнитько В. И., Стрельникова Е. А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Проблемы машиностроения. 2006. №1. С. 105–118.

Strelnikova E., Kriutchenko D., Gnitko V., Degtyarev K. Boundary Element Method in Nonlinear Sloshing Analysis for Shells of Revolution under Longitudinal Excitations. Engineering Analysis with Boundary Elements. 2020. Vol. 111. Р. 78–87. DOI: 10.1016/j.enganabound.2019.10.008.

Gavrilyuk I., Lukovsky I., Trotsenko Yu., Timokha A. Sloshing in a Vertical Circular Cylindrical Tank with an Annular Baffle. Part 1. Linear Fundamental Solutions. Journal of Engineering Mathematics. 2006. Vol. 54. P. 71–88.

Strelnikova E., Kriutchenko D., Gnitko V. Liquid Vibrations in Cylindrical Quarter Tank Subjected to Harmonic, Impulse and Seismic Lateral Excitations. Journal of Mathematics and Statistical Science. 2019. Vol. 5. P. 31–41.

Published

2023-10-18