ON INSOLATION AND DAYLIGHTING OF PREMISES

Authors

DOI:

https://doi.org/10.32782/mathematical-modelling/2024-7-2-13

Keywords:

daylighting, solar radiation, indoor insolation, building design, building technologies

Abstract

Existing European standards address daylight from different perspectives and with different levels of detail. For example, EN 15193 defines a methodology for assessing the contribution of daylight in buildings, but only in the context of calculating energy requirements and electricity consumption for artificial lighting. EN 12464-1 sets out the requirements for indoor workplace lighting to ensure visual comfort and work efficiency, but does not distinguish between natural and artificial lighting. At the international level, ISO 8995-1 has a similar scope to EN 12464, while ISO 16817 covers the design process for high quality visual environments where daylight and artificial lighting play a key role. Until 2018, there was no overarching standard at the European level to regulate the quantity and quality of daylight in buildings. Only a few countries, such as Germany with its DIN 5034-1 standard, had their own daylighting regulations for indoor space. Adopted in 2018, EN 17037 regulates the relevant standards and methods for their calculation for daylighting of residential and industrial premises, as well as adjacent areas. Since then, the process of adapting the norms of EU member states to this standard has begun, taking into account local specifics. Ukraine has building codes that regulate the insolation of premises. Insolation is the amount of solar radiation received by a horizontal surface, measured in calories per unit area per unit time. Insolation calculation methods are divided into two main types: geometric and energy. State building regulations define the minimum duration of insolation of residential premises – at least 2.5 hours per day between 22 March and 22 September. Geometric methods are usually used for the calculation, as they are easier to apply. However, energy methods are more accurate because they take into account the properties of materials that are constantly being improved and have different reactions to solar radiation. This makes energy methods more flexible and better able to adapt to changes in building technologies and materials. An important scholastic problem is a comparative analysis of insolation calculated by different methods. Modern computer technologies allow modeling the insolation of premises already at the design stage, which significantly improves the accuracy of calculation. In this paper, an object-oriented method for calculating insolation for residential and industrial premises has been developed, which allows to harmonize internal norms with European standards.

References

Будинки і споруди. Настанова з розрахунку інсоляції об’єктів цивільного призначення. ДСТУ НБ В.2.2-27:2010. (Дата введення 2011.01.01). Мінрегіонбуд України. Київ : Укрархбудінформ. 2010. 81 с.

Санітарні норми та правила забезпечення інсоляції житлових та громадських будівель та територій житлової забудови. СН 2605-82. (Введено в дію з 2 липня 1982 р.). М.: Мінздрав СРСР. (Державні санітарні норми України). 1982. 3 с.

Житлові будинки. Основні положення. ДБН В.2.2. -15-2005. (Дата введення 2006.01.01). Держбуд України, Київ : Укрархбудінформ, (Державні будівельні норми України). 2005. 50 с.

Jacobs А. Getting the measure of daylight – the climate sceptic, Light. J. 2014. 15–17.

Tregenza Р. Opinion: climate-based daylight modelling or daylight factor? Light. Res. Technol. 2014. 46 (6). pp. 601–618.

Tregenza Р., Mardaljevic J. Daylighting buildings: standards and the needs of the designer, Light. Res. Technol. 2018. 50 (1). pp. 63–79.

Mardaljevic J. Rethinking daylighting and compliance, J. Sustain. Des. Appl. Res. 2023. 1(3). Article 1.

Boubekri M. Daylighting, Architecture and Health: Building Design Strategies, first ed., Architectural Press, Oxford, 2008. 155 p.

Bournas I. Swedish daylight regulation throughout the 20th century and considerations regarding current assessment methods for residential spaces. Building and Environment. 2021. Vol. 191(6). URL: https://www.researchgate.net/publication/348572775.

Marsh R. On the modern history of passive solar architecture: exploring the paradox of Nordic environmental design, J. Architect. 2017. 22 (2). pp. 225–251.

Dufton A.F. Protractors for the Computation of Daylight Factors, 1946. London, UK.

Chatzipoulka C., Compagnon R., Nikolopoulou M. Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study, Sol. Energy. 2016. 138. pp. 53–66.

Reinhart C.F., Mardaljevic J., Rogers Z. Dynamic daylight performance metrics for sustainable building design, Leukos. 2006. 3(1). pp. 7–31.

SSI-CEN. SS-EN 17037:2018+A1:2021 Daylight in buildings. European Committee for Standardization (CEN). 2021.

Патрашку Є.В., Колесник С.М. Про обчислення інсоляції приміщень. Механіка та математичні методи. 2024. 6(2). C. 175–184.

Published

2024-12-30