COMPUTER-INTEGRATED SYSTEM FOR CONTROLLING THE COMBUSTION PROCESS OF SOLID HOUSEHOLD WASTE IN AN INDUSTRIAL FURNACE
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.2.2.22Keywords:
municipal solid waste, incineration, computer-integrated control system, secondary air, flue gas recirculation, energy efficiency, NOx emissions, sensorsAbstract
The issue of municipal solid waste (MSW) disposal remains critical in Ukraine, where over 10 million tons of waste are generated annually, with only 5–7 % recycled, leading to significant landfill accumulation. This poses environmental threats, including methane emissions, groundwater contamination, and land resource depletion. Amid the ongoing war and attacks on Ukraine’s energy infrastructure, MSW incineration with energy recovery emerges as a vital alternative energy source, capable of reducing waste volume by up to 90 % while generating heat or electricity. However, the incineration process requires precise control to minimize emissions of nitrogen oxides (NOx), carbon monoxide (CO), and other toxic compounds, particularly due to the variable composition of MSW (moisture content 20–40 %, organic content 50–70 %). This study aims to enhance MSW incineration by integrating secondary air and flue gas recirculation systems within a computer-integrated control system (CICS). The paper provides a detailed description of the industrial furnace design, which includes a grate, an afterburning chamber, a waste bunker with dosing gates, and systems for secondary air (fan, nozzles, valves) and flue gas recirculation (fan, heat exchanger, filter). The CICS enables adaptive regulation of combustion parameters (temperature 850–1000 °C, oxygen content 6–8 %) based on real-time data from temperature, oxygen, CO, and NOx sensors. Literature analysis confirms that secondary air reduces CO concentrations by 15 %, while flue gas recirculation decreases NOx emissions by 10–15 % and saves 8–10 % of gas cleaning costs. Future research directions include experimental validation of the proposed approach, implementation of IoT-based automation, and integration with CO2 capture technologies to enhance environmental safety and energy efficiency.
References
ECOBUSINESS. (2017). Спалювання відходів: вигоди і обмеження [Waste incineration: Benefits and limitations]. Retrieved from https://ecolog-ua.com/articles/spalyuvannya-vidhodiv-vygody-i-obmezhennya
DLF Attorneys-at-Law. (n.d.). Ukrainian national waste management strategy. Retrieved from https://dlf.ua/en/ukrainian-national-waste-management-strategy/
Lexology. (n.d.). Waste-to-energy: How Ukraine can generate heat and electricity from municipal waste. Retrieved from https://www.lexology.com/library/detail.aspx?g=2b7e7d8d-1e5c-4f5f-9b5f-7e9f2c8e8c2e
Department for Environment, Food & Rural Affairs (DEFRA). (2013). Incineration of municipal solid waste. UK Government.
Верховна Рада України. (n.d.). Закон України «Про охорону атмосферного повітря» [Law of Ukraine “On Air Protection”]. Retrieved from https://zakon.rada.gov.ua/laws/show/2707-12
European Integrated Pollution Prevention and Control Bureau (EIPPCB). (2006). Best available techniques (BAT) reference document for waste incineration. Retrieved from https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-03/ superseded_wi_bref_0806_0.pdf
Niessen, W. R. (2010). Combustion and incineration processes: Applications in environmental engineering. CRC Press.
Chen, D., Yin, L., & Wang, H. (2019). Challenges in municipal solid waste incineration: A review. Waste Management, 92, 45–56. https://doi.org/10.1016/j.wasman.2019.04.032
Li, J., Zhang, X., & Chen, L. (2020). Optimization of secondary air distribution in municipal solid waste incineration for emission reduction. Energy Reports, 6, 451–460. https://doi.org/10.1016/j.egyr.2020.02.015
Yang, Y., Wang, Y., & Zhang, J. (2018). Effects of flue gas recirculation on NOx emissions in waste incineration systems. Journal of Cleaner Production, 185, 123–130. https://doi.org/10.1016/j.jclepro.2018.03.045
Zhang, Q., Li, Y., & Xu, J. (2021). Energy recovery and emission reduction through flue gas recirculation in waste incineration. Renewable Energy, 168, 789–799. https://doi.org/10.1016/j.renene.2020.12.085
Дубовой, В. М. (Ред.). (2018). Промислові комп’ютерно-інтегровані системи: принципи проектування та експлуатації [Industrial computer-integrated systems: Design and operation principles]. Київ : НТУУ «КПІ».
Wang, H., Liu, X., & Zhang, S. (2022). Machine learning applications in waste incineration: A review. Environmental Science and Pollution Research, 29(15), 21034–21045. https://doi.org/10.1007/s11356-021-17856-3







