INTEGRATION OF SMALL MODULAR REACTOR INTO DYNAMIC POWER DISTRIBUTION SYSTEMS WHICH INCORPORATES MULTIPLE RENEWABLE ENERGY GENERATION SOURCES AND LOAD MANAGEMENT METHODS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.1.2Keywords:
generation forecasting, power system balancing, load-following operation, digital twins, energy flexibilityAbstract
The relevance of this study is driven by the need to enhance the reliability and flexibility of power systems with a high share of renewable energy sources (RES), particularly wind power plants (WPP), whose operation is characterized by high variability and forecasting errors. The instability of RES output creates demand for additional balancing capacity and reserve technologies, which increases the cost of electricity and complicates the achievement of low-carbon development goals. Under these conditions, the role of small modular reactors (SMRs) becomes especially important as a source capable of combining baseload generation with flexible operational regulation. The purpose of the article is to develop scientific and practical principles for integrating small modular reactors into dynamic power systems with a high share of renewable energy sources, particularly wind power plants, while accounting for the specific features of generation forecasting and load management. The research methodology is based on a systematic analysis of the technical characteristics of modern SMRs, comparison of their load-following capabilities with conventional power units, application of forecasting models (dayahead, intraday, nowcasting), and the use of scenario planning methods. The study draws upon the generalization of international energy organization experience, analyses of national laboratory reports, and results of modeling hybrid power systems synchronized with SMRs and RES. The findings show that SMRs can compensate for short-term fluctuations in WPP output by regulating power with a gradient of 2–5 % of nominal capacity per minute, reduce the need for fast-response gas turbines or storage reserves, and increase the capacity utilization factor of the system by 10–15 %. The combination of SMRs with digital forecasting and dispatch systems ensures effective synchronization of generation with daily demand profiles and reduces the need for emergency reserves by 12–18 %. The conclusions demonstrate that SMRs can ensure the reliable operation of power systems with a high share of RES, reduce imbalances, decrease renewable generation curtailment, and lower system costs. However, challenges were identified, including the physical limitations of load-following modes, forecasting errors, lack of unified standards, and absence of economic incentives for flexible operation. Future research should focus on optimizing the SMR fuel cycle under regular load-following conditions, developing market mechanisms for flexibility rewards, creating unified operating standards, and modeling integration scenarios of SMRs with RES in varying proportions to determine their role in future low-carbon power systems.
References
Korostin O. Application of NLP technologies for data extraction from text messages in maritime logistics. The Scientific Heritage. 2024. № 141. P. 42–45. DOI: https://doi.org/10.5281/zenodo.12908100
Korostin O. Optimization of maritime transportation routes using artificial intelligence: analysis of opportunities and challenges. Computer-Integrated Technologies: Education, Science, Production. 2024. № 56. P. 31–38. DOI: https://doi.org/10.36910/6775-2524-0560-2024-56-03
Pavlovskyi M. The improvement of fuel efficiency and environmental characteristics of diesel engine by using biodiesel fuels. In: Boichenko S., Zaporozhets A., Yakovlieva A., Shkilniuk I. (eds.) Modern technologies in energy and transport. (Studies in Systems, Decision and Control; Vol. 510). Cham: Springer, 2024. P. 37–47. DOI: https://doi.org/10.1007/978-3-031-44351-0_4
Chmielarz P. Problematyka mediacji w sprawach społecznych i gospodarczych. Studia Politologica. 2022. Vol. 370, № 28. P. 45–60. URL: https://www.ceeol.com/search/article-detail?id=1227519 (date of access: 08.03.2025).
Chmielarz P. Analiza bezpieczeństwa energetycznego Rzeczypospolitej Polskiej w zakresie dostaw gazu ziemnego w latach 2015–2021 w powiązaniu z działaniami politycznymi oraz prawnymi. Rocznik Integracji Europejskiej. 2023. № 17. P. 197–206. DOI: https://doi.org/10.14746/rie.2023.17.12
Маринушкін Б. Особливості малих модульних реакторів (ММР). Universum. 2024. № 9. С. 276–282. URL: https://archive.liga.science/index.php/universum/article/download/1115/1127 (дата звернення: 08.03.2025).
Шараєвський І. Г., Власенко Т. С., Зімін Л. Б., Носовський А. В., Фіалко Н. М., Шараєвський Г. І. Метало-фізичні проблеми надійності зварювальних з’єднань корпусів реакторів ВВЕР. Ядерна енергетика та довкілля. 2022. № 3. С. 3–15. DOI: https://doi.org/10.31717/2311-8253.22.3.1
Michaelson D., Jiang J. Review of integration of small modular reactors in renewable energy microgrids. Renewable and Sustainable Energy Reviews. 2021. Vol. 152. Article 111638. DOI: https://doi.org/10.1016/j.rser.2021.111638
Michaelson D., Jiang J. Integration of small modular reactors into renewable energy-based standalone microgrids: an energy management perspective. IEEE Power and Energy Magazine. 2022. Vol. 20, № 2. P. 57–63. DOI: https://doi.org/10.1109/MPE.2021.3134149
Gabbar H. A., Esteves O. L. A. Real-time simulation of a small modular reactor in-the-loop within nuclearrenewable hybrid energy systems. Energies. 2022. Vol. 15, № 18. Article 6588. DOI: https://doi.org/10.3390/en15186588
Abushamah H. A. S., Burian O., Ray D., Škoda R. Integration of district heating systems with small modular reactors and organic Rankine cycle including energy storage: design and energy management optimization. Energy Conversion and Management. 2024. Vol. 322. Article 119138. DOI: https://doi.org/10.1016/j.enconman.2024.119138
Poudel B., Gokaraju R. Small modular reactor (SMR) based hybrid energy system for electricity & district heating. IEEE Transactions on Energy Conversion. 2021. Vol. 36, № 4. P. 2794–2802. DOI: https://doi.org/10.1109/TEC.2021.3079400
El-Emam R. S., Subki M. H. Small modular reactors for nuclear-renewable synergies: prospects and impediments. International Journal of Energy Research. 2021. Vol. 45, № 11. P. 16995–17004. DOI: https://doi.org/10.1002/er.6838
Simoglou C. K., Kaissas I. M., Biskas P. N. Assessing the implications of integrating small modular reactors in modern power systems. Energies. 2025. Vol. 18, № 10. Article 2578. DOI: https://doi.org/10.3390/en18102578
Non-baseload operation in nuclear power plants: load following and frequency control modes of flexible operation. IAEA: website. 2018. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/P1756_web.pdf (date of access: 08.09.2025).
Opportunities and challenges for nuclear-renewable hybrid energy systems: preprint. NREL: website. 2019. URL: https://docs.nrel.gov/docs/fy19osti/72004.pdf (date of access: 08.09.2025).
The role of flexible nuclear energy systems in a low-carbon energy future. OECD NEA: website. 2020. URL: https://www.oecd-nea.org/jcms/pl_40641/the-role-of-flexible-nuclear-energy-systems-in-a-low-carbon-energyfuture (date of access: 08.09.2025).
Recommended practice for the implementation of renewable energy forecasting solutions. Part 2 (2nd ed.). IEA Wind Task 36: website. 2022. URL: https://iea-wind.org/wp-content/uploads/2022/05/IEAWind_Task36_Recommended_Practice_Part2_2nd_Edition_ExCo_ReviewVersion-1.pdf (date of access: 08.09.2025).
Hybrid energy systems: opportunities for coordinated research. National Renewable Energy Laboratory (NREL): website. 2021. URL: https://docs.nrel.gov/docs/fy21osti/77503.pdf (date of access: 08.09.2025).
The onshore wind potential of the EU and neighbouring countries (ENSPRESO 2). Joint Research Centre (JRC), European Commission: website. 2025. URL: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC139999/JRC139999_01.pdf (date of access: 08.09.2025).
Solar, wind, and load forecasting dataset for MISO, NYISO, and SPP. National Renewable Energy Laboratory (NREL): вебсайт. 2024. URL: https://docs.nrel.gov/docs/fy24osti/83828.pdf (дата звернення: 04.09.2025).
Wind power forecasting error distributions. National Renewable Energy Laboratory (NREL): вебсайт. 2012. URL: https://docs.nrel.gov/docs/fy12osti/56130.pdf (дата звернення: 04.09.2025).
Électricité de France: the contribution of French nuclear fleet to the flexibility of the electric system. NICE Future: вебсайт. 2020. URL: https://www.nice-future.org/docs/nicefuturelibraries/default-document-library/france.pdf (дата звернення: 04.09.2025).
BWRX-300 fact sheet. GE Vernova: вебсайт. 2023. URL: https://www.gevernova.com/content/dam/gepowernuclear/global/en_US/documents/product-fact-sheets/GE%20Hitachi_BWRX-300%20Fact%20Sheet.pdf (дата звернення: 04.09.2025).
NuScale small modular reactors – energy session presentation (PNWER Summit). PNWER: вебсайт. 2017. URL: https://www.pnwer.org/uploads/2/3/2/9/23295822/charles_mercinkiewicz-_energy_session.pdf (дата звернення: 04.09.2025).
NuScale small modular reactor integration for hydrogen and ammonia production (WP-178373 Rev 1). NuScale Power: вебсайт. 2025. URL: https://www.nuscalepower.com/hubfs/Website/Files/Technical%20Publications/nuscalesmall-modular-reactor-integration-for-hydrogen-and-ammonia-production.pdf (дата звернення: 04.09.2025).
Technical and economic aspects of load following with nuclear power plants. OECD NEA: вебсайт. 2021. URL: https://www.oecd-nea.org/jcms/pl_62445/technical-and-economic-aspects-of-load-following-with-nuclear-powerplants (дата звернення: 04.09.2025).
Advanced load following control (ALFC) for PWRs. Framatome: website. 2019. URL: https://www.framatome.com/solutions-portfolio/docs/default-source/default-document-library/product-sheets/a0655-p-ge-g-en-0655-201901-advanced-load-following-control.pdf (date of access: 04.09.2025).







