INFLUENCE OF ELECTROMAGNETIC FIELDS ON THE ACCURACY OF PROTEIN FLUORESCENCE ANALYSIS IN CHEESE PRODUCTS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.1.6Keywords:
spectral analysis, hyperspectral imaging, infrared spectroscopy, MCDA, intelligent control systems, dielectric spectroscopyAbstract
The aim of this work is to determine the effectiveness and suitability of the main electrical engineering methods of spectral analysis (NIR, FTIR/MIR, UV–Vis, fluorescence and Raman spectroscopy, dielectric spectroscopy, and hyperspectral imaging) for automated quality control of dairy products, taking into account the influence of electromagnetic interference on the reproducibility of the fluorescent signal of proteins in cheese matrices. During the study, a comprehensive analysis of literature data and theoretical models of the interaction of external electromagnetic fields with protein fluorophores was carried out, and the main sources of interference in the production environment were classified in accordance with ISO/IEC 17025. A multi-criteria matrix for evaluating methods in four main categories (accuracy, speed, reliability, integration) was developed using MCDA. To verify the proposed criteria, it is recommended to conduct pilot testing of inline systems on the production line, adaptive model calibration modes, and KPI monitoring using k-fold cross-validation and interlaboratory testing procedures. Theoretical analysis showed that external electromagnetic interference can reduce fluorescence intensity by 5–15 % depending on the frequency and power of the field, leading to an increase in RMSE and bias offset. Classification revealed low-frequency and high-frequency (RF, microwaves, pulse inverters) noise sources. A multi-criteria matrix for the application scenario showed that NIR spectroscopy with high speed and moderate accuracy receives a weighted score of 4.4, while fluorescence spectroscopy with the highest sensitivity receives a score of 4.0. The developed MCDA matrix allows you to choose the optimal method depending on production priorities: priority of speed – NIR, priority of accuracy – fluorescence spectroscopy or FTIR/MIR. Practical recommendations for pilot testing, adaptive calibration strategy, and KPI monitoring provide the basis for integrating spectral systems into intelligent control lines in accordance with ISO/IEC 17025 requirements.
References
Різак Г. В. Синтез, фізико-хімічні та біологічні властивості 2,4-діоксо- та 4-іміно-2-оксо-3-феніл-5-R-6-R′-тієно[2,3-d]піримідинів: монографія. Київ, 2016. URL: https://dspace.uzhnu.edu.ua/jspui/handle/lib/52778 (дата звернення: 06.06.2025).
Різак Г. В., Шемчук Л. А., Левашов Д. В., Євсюкова В. Ю., Криськів О. С. Синтез 2-ацилокси-4-оксо(іміно)-3-феніл-5-R-6-R′-тієно[2,3-d]піримідинів та амідоксидів β-(2,4-діоксо-3-феніл-5-R-6-R′-тієно[2,3-d] піримідин-1-іл) пропіонових кислот та їх антимікробна активність. Вісник фармації. 2011. Т. 68. № 4. С. 39–41. URL: https://dspace.uzhnu.edu.ua/jspui/handle/lib/52761 (дата звернення: 06.06.2025).
Surkova A., Bogomolov A. Analysis of milk microstructure using Raman hyperspectral imaging. Molecules. 2023. Vol. 28. № 6. Article 2770. DOI: https://doi.org/10.3390/molecules28062770
Pereira C. G., Luiz L. C., Bell M. J. V., Anjos V. Near and mid infrared spectroscopy to assess milk products quality: A review of recent applications. Dairy Research and Technology. 2020. Vol. 10. Article 14. DOI: https://doi.org/10.24966/DRT-9315/100014
Ashoorirad M., Baghbani R., Ghalamboran M. R. Bioimpedance sensor to detect water content in milk based on van der Pauw method. IET Nanobiotechnology. 2021. Vol. 15. № 1. С. 611–618. DOI: https://doi.org/10.1049/nbt2.12056
Ceniti C., Spina A. A., Piras C., Oppedisano F., Tilocca B., Roncada P., Britti D., Morittu V. M. Recent advances in the determination of milk adulterants and contaminants by mid-infrared spectroscopy. Foods. 2023. Vol. 12. № 15. Article 2917. DOI: https://doi.org/10.3390/foods12152917
Cinelli M., Kadziński M., Miebs G., Gonzalez M., Słowiński R. Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. arXiv. 2021. DOI: https://doi.org/10.48550/arXiv.2106.07378
De Marchi M., Penasa M., Zidi A., Manuelian C. L. Invited review: Use of infrared technologies for the assessment of dairy products – Applications and perspectives. Journal of Dairy Science. 2018. Vol. 101. № 12. С. 10589–10604. DOI: https://doi.org/10.3168/jds.2018-15202
Ríos-Reina R., Azcarate S. M. How Chemometrics Revives the UV–Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (nontargeted) Analysis. Chemosensors. 2023. Vol. 11. № 1. Article 8. DOI: https://doi.org/10.3390/chemosensors11010008
Du L., Hu G., Hu Y., Wang Q. Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges. Sensors. 2023. Vol. 23. № 15. Article 6874. DOI: https://doi.org/10.3390/s23156874
Freire P., Zamora A., Castillo M. Synchronous front-face fluorescence spectra: A review of milk fluorophores. Foods. 2024. Vol. 13. № 5. Article 812. DOI: https://doi.org/10.3390/foods13050812
In-line near-infrared analysis of milk coupled with machine learning methods for the daily prediction of blood metabolic profile in dairy cattle / Giannuzzi D. et al. Scientific Reports. 2022. Vol. 12. Article 8058. DOI: https://doi.org/10.1038/s41598-022-11799-0
Guerra A., Boselli C., Galli T., Ciofi L., Fichi G., De Marchi M., Manuelian C. L. Low effectiveness of mid-infrared spectroscopy prediction models of Mediterranean Italian buffalo bulk milk coagulation traits. Foods. 2024. Vol. 13. № 13. Article 1957. DOI: https://doi.org/10.3390/foods13131957
Hetterich J. Using analytical hierarchy process (AHP) to introduce weights to social life cycle assessment of mobility services. Sustainability. 2021. Vol. 13. № 3. Article 1258. DOI: https://doi.org/10.3390/su13031258
Hu H., Zhou H., Cao K., Lou W., Zhang G., Gu Q., Wang J. Biomass estimation of milk vetch using UAV hyperspectral imagery and machine learning. Remote Sensing. 2024. Vol. 16. № 12. Article 2183. DOI: https://doi.org/10.3390/rs16122183
ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. ISO: website. 2017. URL: https://www.iso.org/standard/66912.html (date of access: 06.01.2025).
Khristoforova Y., Bratchenko L., Bratchenko I. Combination of Raman spectroscopy and chemometrics: A review of recent studies published in the Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy Journal. arXiv. 2022. DOI: https://doi.org/10.48550/arXiv.2210.10051
Medina-García M., Amigo J. M., Martínez-Domingo M. A., Valero E. M., Jiménez-Carvelo A. M. Strategies for analysing hyperspectral imaging data for food quality and safety issues – A critical review of the last 5 years. Microchemical Journal. 2025. Vol. 214. Article 113994. DOI: https://doi.org/10.1016/j.microc.2025.113994
Panagiotidou E., Chountalas P. T., Magoutas A. I., Kotsopoulos T. A. Systematic identification and validation of critical success factors for ISO/IEC 17025 implementation. Administrative Sciences. 2025. Vol. 15. № 2. Article 60. DOI: https://doi.org/10.3390/admsci15020060
Scandurra G., Cardillo E., Ciofi C., Ferro L. UHT milk characterization by electrical impedance spectroscopy. Applied Sciences. 2022. Vol. 12. № 15. Article 7559. DOI: https://doi.org/10.3390/app12157559
Ma Y. B., Amamcharla J. K. A rapid method to quantify casein in fluid milk by front-face fluorescence spectroscopy combined with chemometrics. Journal of Dairy Science. 2021. Vol. 104. № 1. С. 243–252. DOI: https://doi.org/10.3168/jds.2020-18799
Zhang H., Wisuthiphaet N., Cui H., Nitin N., Liu X., Zhao Q. Spectroscopy approaches for food safety applications: Improving data efficiency using active learning and semi-supervised learning. arXiv. 2021. DOI: https://doi.org/10.48550/arXiv.2110.03765
Zhang Z.-Y., Su J.-S., Xiong H.-M. Technology for the quantitative identification of dairy products based on Raman spectroscopy, chemometrics, and machine learning. Molecules. 2025. Vol. 30. № 2. Article 239. DOI: https://doi.org/10.3390/molecules30020239







