MODEL FOR ASSESSING THE LEVEL OF SURVIVAL OF AN INFORMATION SYSTEM WITH THE PROPERTIES OF PARTIAL REGULATED INTERCHANGEABILITY OF SUBSYSTEMS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.2.2Keywords:
modeling, optimization, logistic dependencies, effect, survivability, resources, information systemsAbstract
The purpose of the study is to develop a model for assessing the level of survivability of an information system, which allows finding the optimal distribution of resources between its subsystems, taking into account the level of their interchangeability. The following subsystems are considered as part of the survivability system: a subsystem for detecting harmful effects based on already known scenarios, a subsystem for detecting “zero-day” attacks, and a subsystem for preventing detected intrusions. The most adequate is the dependence of the useful effect of the subsystem on the input resources based on logistic dependencies, which are uniquely specified by the parameters: the ordinates of the asymptotes, the constant value of the logistic dependency, which determines the rate of maximum growth of the logistic dependency, and the abscissa of the symmetry point, which depends on the initial conditions. Scalar convolutions are used to combine the effects of subsystems into the overall effect of the system. It is proposed to use basic convolutions with the properties of complete interchangeability of subsystems (additive) and complete non-interchangeability of subsystems (minimizing).An additive-minimizing convolution is proposed, which allows you to adjust the model to different levels of subsystem interchangeability in the entire range of possible values. Dependencies are formulated to find the optimal distribution of resources between subsystems to ensure the maximum useful effect of the system. The optimal solution is found by the method of complete direct search, which made it possible to avoid local optima and confidently find the global maximum.The optimal point changes its position depending on the values of the parameters of the interchangeability level coefficient and the total resource of the system. The trajectories of the optimal solutions are constructed for different parameter values, which allows not only to find the optimal solution for the current parameters, but also to find parameters that would allow improving the effect of the system, taking into account a possible change in work scenarios.
References
Shailendra Upadhyay. (2024). Information Security Spending: What Does the Future Hold? Website Gartner. November 27, 2024. Available at: https://www.gartner.com/en/articles/information-security?utm_source=chatgpt.com
Westmark, V.R.. (2004). A Definition for information system survivability. 37. 10 pp.. 10.1109/HICSS.2004.1265710
Popereshnyak S., Novikov Y., Zhdanova Y. (2024). Cryptographic system security approaches by monitoring the random numbers generation. CEUR Workshop Proceedings. 2024. Vol. 3826. P. 301–309. URL: https://ceur-ws.org/Vol-3826/short21.pdf (дата звернення: 18.09.2025).
Шевченко В. Л. (2011). Оптимізаційне моделювання в стратегічному плануванні. Київ : ЦВСД НУОУ, 283.
Шевченко В. Л., Нестеренко О. В., Нетесін І. Є., Шевченко А. В., Поліщук В. Б. (2019). Прогнозне моделювання комп’ютерних вірусних епідемій. Київ : УкрНЦ РІТ, 152. http://e.ieu.edu.ua/handle/123456789/647
Khmelevskoy R., Laptiev S., Laptievа T. (2021). Improving the Method of Assessing the Information Security of Computer Systems from Malicious Software. International Journal of Science and Engineering Investigations (IJSEI) Denmark, 113 (10), 43–48. https://www.ijsei.com/papers/ijsei-1011321-07.pdf
Syvytsky Y., Shevchenko V. (2024). Computer Simulation Model of the Organization at the Stage of Transformation for the Purpose of Adaptation to New Projects. 14th International Scientific and Practical Conference from Programming UkrPROG’2024. May 14–15. Kyiv. Ukraine, 421–433.
Рабчун Д. І. (2015). Оцінка ефективності інформаційної безпеки з урахуванням економічних показників. Сучасний захист інформації, 4, 91–97. https://journals.dut.edu.ua/index.php/dataprotect/article/view/429/397
Yevseiev S., Ponomarenko V., Laptiev O., Milov O. and others. (2021). Synergy of building cybersecurity systems: monograph. Kharkiv: PC TECHNOLOGY CENTER, 188. https://www.scopus.com/record/display.uri?eid=2-s2.0-85119654284&origin=resultslist https://www.researchgate.net/publication/352013398_Synergy_of_building_cybersecurity_systems_Monograph
Syvachenko I., Bakaiev O., Shevchenko V. (2024). Scalarization of the vector criterion of information system survivability based on information security indicators. Proceedings of the Cybersecurity Providing in Information and Telecommunication Systems II (CPITS-II 2024), Kyiv, Ukraine, October 26, 2024, CEUR Workshop Proceedings, ISSN 1613-0073, 2024, Vol-3826, 294–300. https://ceur-ws.org/Vol-3826/short20.pdf, Scopus, dblp
Emmerich M., Deutz A. (2024). Multicriteria Optimization and Decision Making. Principles, Algorithms and Case Studies : Lecture Notes. MSc Course 2012-2023, LIACS, Leiden University. The Netherlands. Updated and Revised Edition, June 2024, 106. https://arxiv.org/pdf/2407.00359v2
Marateb H., Norouzirad M., Tavakolian K., Aminorroaya F. O, Mohebbian M., Mañanas M. Á., Lafuente S. R., Sami R., Mansourian M. (2023). Predicting COVID-19 Hospital Stays with Kolmogorov–Gabor Polynomials: Charting the Future of Care. Information, 14(11), 590. https://doi.org/10.3390/info14110590
Qian N., Gao J., Li Z., Yan Z., Feng Y., Yan Z., Yang L. (2024). Bridging the Terrestrial Water Storage Anomalies between the GRACE/GRACE-FO Gap Using BEAST + GMDH Algorithm. Remote Sensing, 16(19), 3693. https://doi.org/10.3390/rs16193693
Mohammad A., Belayneh M. (2024). Field Telemetry Drilling Dataset Modeling with Multivariable Regression, Group Method Data Handling, Artificial Neural Network, and the Proposed Group-Method-Data-Handling-Featured Artificial Neural Network. Applied Sciences, 14(6), 2273. https://doi.org/10.3390/app14062273
Achite M., Katipoğlu O. M., Kartal V., Sarıgöl M., Jehanzaib M., Gül E. (2025). Advanced Soft Computing Techniques for Monthly Streamflow Prediction in Seasonal Rivers. Atmosphere, 16(1), 106. https://doi.org/10.3390/atmos16010106
Ivakhnenko A. G. (1971). Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern, 4, 364–378. DOI: 10.1109/TSMC.1971.4308320 https://ieeexplore.ieee.org/document/4308320
Fedoriienko V. (2021). Model of the special software development and modification based on account factors of complexity, workability, qualification of programmers and resource limitations. Political Science and Security Studies Journal. Przeworsk, 2 (3), 94–104. URL: http://psssj.eu/index.php/ojsdata/issue/view/4 https://doi.org/10.5281/zenodo.5544382 https://psssj.eu/index.php/ojsdata/article/view/69
Shevchenko A., Fedorenko R., Shmorhun Y., Hrebennikov A., Shevchenko V. (2019). Designing of Functionally Stable Information Systems Optimal for a Minimum of Losses. 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana-Svalyava (Zakarpattya), IEEE Xplore, 36–40. DOI: 10.1109/CADSM.2019.8779299 https://ieeexplore.ieee.org/document/8779299







