BIOTECHNOLOGICAL POTENTIAL OF SEAWEEDS OF THE ZOSTERACEAE FAMILY: TARGET COMPONENTS, EXTRACTION METHODS AND DIRECTIONS OF APPLICATION

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.3.1.16

Keywords:

seagrasses, biomass, bioenergy, circular economy, sustainable development, waste

Abstract

This article explores the biotechnological potential of seagrasses of the family Zosteraceae, with a particular emphasis on Zostera marina from the Black Sea basin. The ecological role of these species as keystone components of coastal ecosystems is considered, alongside the issue of annual storm-cast accumulations, which remain an insufficiently utilized biomass resource. Contemporary knowledge on the chemical composition of Z. marina is summarized, highlighting polysaccharides (cellulose, hemicelluloses, pectins), lipids, phenolic metabolites, and mineral elements. Potential application areas are identified, including the production of biofuels, functional food and pharmaceutical ingredients, paper and packaging materials, as well as plant-based biocomposites. Particular attention is given to extraction and processing approaches – such as organic and supercritical fluid extraction, enzymatic hydrolysis, and microbial fermentation – that allow efficient recovery of target compounds and support the development of high value-added products. It is argued that the integrated, multistage processing of Zosteraceae biomass can ensure waste minimization, foster the transition to circular economy models, and contribute to the sustainable use of marine resources. The rational utilization of storm-cast seagrasses is concluded to provide dual benefits: mitigating environmental pressure on Black Sea coastal ecosystems and creating a foundation for innovative, resource-efficient industries in Ukraine. These findings highlight the potential of Zosteraceae to support the advancement of the blue bioeconomy and align national priorities with modern European sustainable development strategies.

References

Ukrainian Scientific Centre of Ecology of the Sea (UkrSCES). State Monitoring Programme of the Black and Azov Seas. Київ : Ministry of Environmental Protection and Natural Resources of Ukraine, 2022. URL: https://sea.gov.ua/?lang=en (дата звернення: 11.09.2025).

Greenpeace. Pressures, Threats and Impacts on Life in the Black Sea : Greenpeace Report. 2024. URL: https://www.greenpeace.org/static/planet4-romania-stateless/2024/05/5bacf577-02_pressures-threats-and-impacts-onlife-in-the-black-sea_greenpeace_rev02-1-1.pdf (дата звернення: 11.09.2025).

Grignon-Dubois M., Rezzonico B. Phenolic chemistry of the seagrass Zostera marina Linnaeus: First assessment of geographic variability among populations on a broad spatial scale. Phytochemistry. 2023. Vol. 213. Art. 113788. DOI: 10.1016/j.phytochem.2023.113788

Uchida M., Miyoshi T., Kaneniwa M., Ishihara K., Nakashimada Y., Urano N. Production of 16.5 % v/v ethanol from seagrass seeds. J. Biosci. Bioeng. 2014. Vol. 118, № 6. С. 646–650. DOI: 10.1016/j.jbiosc.2014.05.017

Duarte C. M., Borum J., Short F. T., Walker D. I. Seagrass ecosystems: their global status and prospects. У кн.: Polunin N. V. C. (ed.) Aquatic Ecosystems: Trends and Global Prospects. Cambridge : Cambridge University Press, 2008. С. 281–294.

Rasmussen E. Seagrasses: Their uses, threats and management. Aquatic Botany. 1977. Vol. 3, Issue 4. С. 297–308. DOI: 10.1016/0304-3770(77)90030-1

Bessonova V. P., Malyarenko O. S., Stonik V. A., Elyakov G. B. Zosterin – pectin from seagrass Zostera marina with gastroprotective effect. Hydrobiological Journal. 2004. Vol. 40, № 3. С. 85–92. DOI: 10.1615/HydrobJ.v40.i3.80

Bociag K., Stawicka A., Urbaniak M., та ін. Phenolic chemistry of the seagrass Zostera marina: Geographic variability among populations. Aquatic Botany. 2021. Vol. 171. Art. 103393. DOI: 10.1016/j.aquabot.2021.103393

Sævdal Dybsland C., Bekkby T., Hasle Enerstvedt K., Kvalheim O. M., Rinde E., Jordheim M. Variation in Phenolic Chemistry in Zostera marina Seagrass along Environmental Gradients. Plants. 2021. Vol. 10, № 2. Art. 334. DOI: 10.3390/plants10020334. URL: https://www.mdpi.com/2223-7747/10/2/334 (дата звернення: 12.09.2025).

Li H., Zhu Y., Cao W., та ін. Liquefaction of marine biomass into bio-polyols for polyurethane foams. Cellulose. 2019. Vol. 26. С. 4807–4819. DOI: 10.1007/s10570-019-02394-3

Choi J., Choi S., Kim Y., та ін. Mechanical properties of seagrass fibers for composites. BioResources. 2018. Vol. 13, № 2. С. 2820–2831. DOI: 10.15376/biores.13.2.2820-2831

Liu C., Guo R., Zhang Y., та ін. Papermaking properties of seagrass fibers. BioResources. 2019. Vol. 14, № 2. С. 2671–2684. DOI: 10.15376/biores.14.2.2671-2684

Fragassa C., Pavlovic A., Santulli C. Seagrass fibres as sustainable reinforcements for polymer-based composites: A review. Polymers. 2025. Vol. 17, № 3. Art. 567. DOI: 10.3390/polym17030567

Crupi V., Majolino D., Fazio B., та ін. Seagrass-based natural fibres: Potential applications in marine composites. Marine Structures. 2023. Vol. 87. Art. 103385. DOI: 10.1016/j.marstruc.2023.103385

Fourqurean J. W., Manuel S. A., Kendrick G. A., та ін. Seagrass ecosystems as a globally significant carbon stock. Frontiers in Marine Science. 2023. Vol. 10. Art. 112233. DOI: 10.3389/fmars.2023.112233

Waycott M., Duarte C. M., Carruthers T. J. B., та ін. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Hydrobiologia. 2023. Vol. 887. С. 1–19. DOI: 10.1007/s10750-023-05124-4

European Commission. Blue Bioeconomy Report 2022. Luxembourg : Publications Office of the European Union, 2022. DOI: 10.2777/0186

Salvador J., та ін. Blue growth and the role of seagrass biomass in sustainable bioeconomy. Journal of Cleaner Production. 2025. Vol. 432. Art. 139847. DOI: 10.1016/j.jclepro.2025.139847

Міністерство захисту довкілля та природних ресурсів України. Національна доповідь про стан навколишнього природного середовища в Україні (2021). Київ : МЗДПР, 2021. URL: https://mepr.gov.ua (дата звернення: 12.09.2025).

Davies P., Morvan C., Sire O., та ін. Structure and properties of fibres from seagrass (Zostera marina). J. Mater. Sci. 2007. Vol. 42. С. 4850–4857. DOI: 10.1007/s10853-006-0546-1

Караюмер А. Ю., Кустовська А. Д. Використання волокнистих відходів комплексної переробки водоростевої біомаси роду Zostera для виробництва паперових матеріалів. Наукоємні технології. 2025. № 2(66). С. 278–287.

Herrero M., Cifuentes A., Ibáñez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry. 2006. Vol. 98, № 1. С. 136–148. DOI: 10.1016/j.foodchem.2005.05.058

Guschina I. A., Harwood J. L. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research. 2006. Vol. 45. С. 160–186. DOI: 10.1016/j.plipres.2006.10.005

Uwineza P. A., Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from plant materials. Molecules. 2020. Vol. 25, № 17. Art. 3847. DOI: 10.3390/molecules25173847.URL: https://www.mdpi.com/1420-3049/25/17/3847 (дата звернення: 14.09.2025).

Holdt S. L., Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology. 2011. DOI: 10.1007/s10811-010-9632-5

Shikov A. N., Pozharitskaya O. N., Makarov V. G., Kvetnaya A. S. Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Frontiers in Marine Science. 2022. Vol. 9. Art. 182. DOI: 10.3389/fmars.2022.860273

Park J. S., Jung S. M., Lee D. Y., Kang B. J., Lee W. C. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in polluted bay systems. Marine Pollution Bulletin. 2019. Vol. 149. Art. 110650. DOI: 10.1016/j.marpolbul.2019.110650

Martins A., Vieira H., Gaspar H., Santos S. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Marine Drugs. 2022. Vol. 20, № 7. С. 456. DOI: 10.3390/md20070456

Lomartire S., Gonçalves A. M. M. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications. Foods. 2022. Vol. 11, № 19. С. 3654. DOI: 10.3390/foods11193654

Balestri E., Vallerini F., Castelli A., Lardicci C. Use of bio-containers from seagrass wrack with nursery planting to improve the eco-sustainability of coastal habitat restoration. Journal of Environmental Management. 2019. Vol. 251. Art. 109594. DOI: 10.1016/j.jenvman.2019.109594

Torres M. D., Kraan S., Domínguez H. A Review on Seaweeds and Seaweed-Derived Polysaccharides: Nutrition, Chemistry, Bioactivities, and Applications. Critical Reviews in Food Science and Nutrition. 2023. Vol. 63, № 18. С. 2994–3015. DOI: 10.1080/10408398.2021.1969534

Zhou C., Yu X., Zhang Y., He R., Ma H. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Comprehensive Reviews in Food Science and Food Safety. 2024. Vol. 23, № 4. Art. e13396. DOI: 10.1111/1541-4337.13396

Kim J. H., Lee H. A., Kang M. S., Park J. C., Lee S. H. Anti-phototoxicity and anti-melanogenesis activities of eelgrass Zostera marina and its phenolic constituents. Fitoterapia. 2024. Vol. 173. Art. 105785. DOI: 10.1016/j.fitote.2023.105785

Saha M., Goecke F., Bhadury P. Minireview: Algal natural compounds and extracts as antifoulants. Journal of Applied Phycology. 2021. Vol. 33, № 3. С. 1571–1581. DOI: 10.1007/s10811-021-02405-5

García-Vaquero M., Hayes M., O’Doherty J. V., Rajauria G. Seaweed proteins and applications in food and feed. Trends in Food Science & Technology. 2021. Vol. 104. С. 184–194. DOI: 10.1016/j.tifs.2020.08.003

Kumar Y., Saxena A., Ramamurthy P. C., Voravuthikunchai S. P. Seaweed-based polysaccharides – Review of extraction, characterization, and bioplastic application. Green Chemistry. 2024. Vol. 26, № 5. С. 2728–2760. DOI: 10.1039/D3GC04375K

Alsenani F., Tupally K. R., Choi B. J., Zehravi M., Akter R., Ali F., Rahman M. H., Hanapi N. A., Ming L. C. Seaweed polysaccharides: Sources, structure and biomedical applications with special emphasis on antiviral potentials. Process Biochemistry. 2024. Vol. 143. С. 1–15. DOI: 10.1016/j.procbio.2024.04.031

Fourqurean J. W., Duarte C. M., Kennedy H., та ін. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience. 2012. Vol. 5, № 7. С. 505–509. DOI: 10.1038/ngeo1477

Shikov A. N., Pozharitskaya O. N., Makarov V. G., Kvetnaya A. S. Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Frontiers in Marine Science. 2022. Vol. 9. Art. 182. DOI: 10.3389/fmars.2022.860273

Park J. S., Jung S. M., Lee D. Y., Kang B. J., Lee W. C. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in polluted bay systems. Marine Pollution Bulletin. 2019. Vol. 149. Art. 110650. DOI: 10.1016/j.marpolbul.2019.110650

Published

2025-11-28