THE ROLE OF 3D PRINTING IN THE PERSONALIZED DESIGN OF PROSTHESES AND ORTHESES FOR PATIENTS WITH DISABILITIES
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.2.20Keywords:
additive technologies, biocompatible materials, digital modeling, biomechanical adaptation, rehabilitation medicineAbstract
The relevance of the study is determined by the urgent need to develop effective prosthetic and orthotic solutions for patients with disabilities that meet modern requirements for quality of life, social integration, and rehabilitation support.Traditional manufacturing methods often neglect individual anatomical and biomechanical features, which reduces their effectiveness. 3D printing enables the integration of digital modeling, additive manufacturing, and biocompatible materials into a unified technological cycle, creating opportunities for an entirely new level of personalization.The aim of the article is to provide a comprehensive scientific justification for the role of 3D printing technologies in the personalized design and production of prostheses and orthoses for patients with disabilities, as well as to identify prospects for their integration into contemporary clinical and rehabilitation practice.The research methodology is based on a systematic analysis of the principles of digital modeling, parametric design, and the use of biocompatible materials in combination with additive technologies. Methods applied include comparative analysis, modeling of the functional characteristics of devices, and the generalization of data from current clinical practices.The study demonstrated that additive technologies increase the accuracy of reproducing anatomical structures, as well as the functionality and comfort of prostheses and orthoses. Economic and organizational advantages of the transition to an on-demand production model were identified. It was established that 3D printing reduces production time, lowers costs, and enhances rehabilitation outcomes. Key technological, material, and regulatory constraints that limit large- scale implementation of this technology in medical practice were also outlined.The conclusions confirm that 3D printing can ensure a high level of personalization of devices, improve the quality of rehabilitation, and expand the accessibility of modern medical technologies. It was found that implementation requires the standardization of digital protocols, the development of material science, the automation of production processes, and the establishment of multidisciplinary clinical-engineering teams.Future research perspectives are related to the use of digital twins for design optimization, the development of combined printing technologies to integrate polymer and composite materials, the creation of registries of clinical outcomes for 3D-printed devices, and the improvement of regulatory and economic mechanisms for their reimbursement. These directions open opportunities for the large-scale integration of 3D printing into the system of personalized rehabilitation medicine.
References
Литвиненко М. І., Рисована Л. М., Григорук В. В., Алексеєнко Р. В., Гранкіна С. С. Вплив біомеханіки на оптимізацію дизайну та функціональності протезів і ортезів. Новий колегіум. 2024. Вип. 3, № 115. С. 89–95. DOI: https://doi.org/10.34142/nc.2024.3.89
Семінська Н. В., Мусієнко О. С., Слободянюк І. В., Белевець К. С., Степанова А. А., Шитікова Н. С. Виготовлення протезів нижніх кінцівок: виклики, аналіз та можливі рішення. Біомедична інженерія і технологія. 2024. № 14. С. 8–17. DOI: https://doi.org/10.20535/2617-8974.2024.14.303997
Pereira J. D. S., Xavier A. S. M. S., Monteiro R. D. S., Cruz V. V., Pereira M. F. D. S., Tholl A. D., Machado W. C. A. 3D-printed orthoses and prostheses for people with physical disability in rehabilitation centers: a scoping review. BMC Musculoskeletal Disorders. 2024. Vol. 25, № 1. Article 783. DOI: https://doi.org/10.1186/s12891-024-07875-3
Vennam S., Vijayasankar K. N., Pati F. 3D printed personalized assistive devices: a material, technique, and medical condition perspective. Applied Materials Today. 2024. Vol. 40. Article 102403. DOI: https://doi.org/10.1016/j.apmt.2024.102403
Banga H. K., Kalra P., Belokar R. M., Kumar R. Design and fabrication of prosthetic and orthotic product by 3D printing. In: Prosthetics and Orthotics. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.94846
Lee K. H., Kim D. K., Cha Y. H., Kwon J. Y., Kim D. H., Kim S. J. Personalized assistive device manufactured by 3D modelling and printing techniques. Disability and Rehabilitation: Assistive Technology. 2019. Vol. 14, № 5. P. 526–531. DOI: https://doi.org/10.1080/17483107.2018.1494217
Leite M., Soares B., Lopes V., Santos S., Silva M. T. Design for personalized medicine in orthotics and prosthetics. Procedia CIRP. 2019. Vol. 84. P. 457–461. DOI: https://doi.org/10.1016/j.procir.2019.04.254
Górski F., Denysenko Y., Kuczko W., Żukowska M., Wichniarek R., Zawadzki P., Rybarczyk J. Individualized 3D printed orthopaedic and prosthetic devices using AutoMedPrint technology – Methodologies and examples. Advances in Science and Technology. Research Journal. 2024. Vol. 18, № 6. DOI: https://doi.org/10.12913/22998624/191548
Miclaus R., Repanovici A., Roman N. Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis. Materiale Plastice. 2017. Vol. 54, № 1. P. 98–102. DOI: https://doi.org/10.37358/MP.17.1.4794
Borthakur P. P. The Role and Future Directions of 3D Printing in Custom Prosthetic Design. Engineering Proceedings. 2024. Vol. 81, № 1. Article 10. DOI: https://doi.org/10.3390/engproc2024081010
Demeco A., Foresti R., Frizziero A., Daracchi N., Renzi F., Rovellini M., Costantino C. The upper limb orthosis in the rehabilitation of stroke patients: the role of 3D printing. Bioengineering. 2023. Vol. 10, № 11. Article 1256. DOI: https://doi.org/10.3390/bioengineering10111256
Thomann G., de Carvalho V. A. Personalized upper limb orthosis necessitates variety of tools during the development process: hemiplegic child case study. Disability and Rehabilitation: Assistive Technology. 2021. Vol. 16, № 2. P. 188–195. DOI: https://doi.org/10.1080/17483107.2019.1646820
Thorsen R., Bortot F., Caracciolo A. From patient to maker – a case study of co-designing an assistive device using 3D printing. Assistive Technology. 2021. Vol. 33, № 6. P. 306–312. DOI: https://doi.org/10.1080/10400435.2019.1634660
Oud T. A. M., Lazzari E., Gijsbers H. J. H., Gobbo M., Nollet F., Brehm M. A. Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. PLoS One. 2021. Vol. 16, № 11. e0260271. DOI: https://doi.org/10.1371/journal.pone.0260271
Reverse Engineering using an Artec 3D Scanner with SOLIDWORKS. Javelin. 2025. URL: https://www.javelin-tech.com/blog/2019/03/reverse-engineering-solidworks/ (date of access: 09.09.2025).
Prosthetic Production Takes a Step Forward With the 3D Printed NOVA Foot. Formlabs. 2025. URL: https://formlabs.com/global/blog/sls-nova-foot/ (date of access: 09.09.2025).
Reducing prosthesis fitting time through additive manufacturing. Manufacturing PA Innovation Program. 2025. URL: https://manufacturingpa.org/news/2022/08/rmu-union-orthotics.html (date of access: 09.09.2025).
Hub-and-spoke. 2025. URL: https://hubandspoke.works/ (date of access: 09.09.2025).







