MODELING OF WEAR AND RESTORATION PROCESSES OF HARD-ALLOY STEELS FOR PREDICTING THE DURABILITY OF MACHINE PARTS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.1.28Keywords:
abrasive wear, combined failure mechanisms, residual life, restoration technologies, predictive model, technical service of machine and tractor fleet, corrosion, durability of parts, restoration of partsAbstract
The relevance of this study is determined by the need to ensure the durability and reliability of agricultural machinery parts that operate under complex abrasive, corrosive, and dynamic loading conditions. It has been established that traditional approaches to service life assessment do not account for combined degradation mechanisms or the effectiveness of restoration technologies, which leads to higher operating costs and reduced equipment productivity. The aim of the article is to develop scientifically justified approaches to predicting the durability of agricultural machinery parts by analyzing the wear processes of hard-alloy steels and assessing the impact of restoration technologies on extending their service life. The research methodology is based on a systematic analysis of operating conditions that define material degradation, classification of wear mechanisms, comparison of the effectiveness of modern restoration technologies, and the development of an integrated model for predicting the service life of parts. The study incorporates the generalization of experimental data, analysis of repair practices, and elements of mathematical modeling that consider the multifactorial impact of loads. The results revealed the patterns of influence of abrasive, adhesive, fatigue, and corrosive mechanisms on the loss of part functionality. It was proven that isolated wear mechanisms are rare, while combined scenarios prevail and accelerate degradation. The effectiveness of modern restoration technologies, including surfacing, plasma spraying, laser alloying, and chemical-thermal treatment, was assessed, demonstrating that the service life of parts can be extended by 1.5 to 3 times. The conclusions confirm that the integrated approach enables a shift from reactive repairs to preventive maintenance, reduces emergency downtime, and improves the economic efficiency of agricultural production. The study also identified limitations related to insufficient data for model validation, lack of standardized methodologies, and challenges in integrating digital monitoring systems. Future research should focus on developing methods for integrating sensor monitoring into modeling schemes, creating large datasets for machine learning algorithms, and providing economic justification for the implementation of durability prediction technologies in industrial practice.
References
Atynian A., Bratishko S., Butnik S., Zhyhlo A., Buhaevskyi V. Use of carbon composites in repair of overpasses and bridges. Věda a perspektivy. 2024. № 8(39). P. 213–225. DOI: https://doi.org/10.52058/2695-1592-2024-8(39)-213-225.
Коростін О. О. Підходи до зменшення вуглецевого сліду в тренуванні великих ML-моделей. Таврійський науковий вісник. Серія: Технічні науки. 2025. Вип. 1. С. 40–51. DOI: https://doi.org/10.32782/tnv-tech.2025.1.5 (дата звернення: 08.03.2025).
Pavlovskyi M. The improvement of fuel efficiency and environmental characteristics of diesel engine by using biodiesel fuels. In: Boichenko S., Zaporozhets A., Yakovlieva A., Shkilniuk I. (eds.) Modern technologies in energy and transport. (Studies in Systems, Decision and Control; Vol. 510). Cham: Springer, 2024. DOI: https://doi.org/10.1007/978-3-031-44351-0_4
Li X., Zhai C., He W., Lu Y., Zhang B. Experimental investigation of tool wear and machining quality of BTA deep-hole drilling in low-carbon alloy steel SA-5083. Materials. 2023. Vol. 16, № 20. Article 6686. DOI: https://doi.org/10.3390/ma16206686
Kostyk K., Kuric I., Saga M., Kostyk V., Ivanov V., Kovalov V., Pavlenko I. Impact of magnetic-pulse and chemical-thermal treatment on alloyed steels’ surface layer. Applied Sciences. 2022. Vol. 12, № 1. Article 469. DOI: https://doi.org/10.3390/app12010469
Gao L., Xu C., Ge X., Hu Q., Wang X., Meng Y., Liu B. Study on microstructure and properties between alloy steel and powder steel via hot isostatic pressing diffusion bonding. Materials Today Communications. 2024. Vol. 41. Article 110390. DOI: https://doi.org/10.1016/j.mtcomm.2024.110390
Huang J., Xu J., Wu X., Wang C., Jin C., Ji X., Han T. Effects of different forging ratios on microstructure, mechanical properties and friction and wear behaviour of Q355D steel. Canadian Metallurgical Quarterly. 2025. Vol. 64, № 3. P. 927–942. DOI: https://doi.org/10.1080/00084433.2024.2398933
Selvam L., Ganapathy V., Arumugam P., Ramarathinam R. P., Ramdas P. V., Palanivel A., Rajendran V. A study of oxidation behaviour of hard-faced surface on steel using SMAW. AIP Conference Proceedings. 2024. Vol. 3192, № 1. Article 020065. DOI: https://doi.org/10.1063/5.0241671
Bendikiene R., Ciuplys A., Kavaliauskiene L. Circular economy practice: from industrial metal waste to production of high wear resistant coatings. Journal of Cleaner Production. 2019. Vol. 229. P. 1225–1232. DOI: https://doi.org/10.1016/j.jclepro.2019.05.068
Wang B., Guo Y., Zhang Z., Yi X., Wang D. Investigation of cryogenic friction and wear properties of Invar 36 alloy against Si3N4 ceramic balls. Wear. 2023. Vol. 518. Article 204648. DOI: https://doi.org/10.1016/j.wear.2023.204648
Song C., Hu S., Han Q., Han X., Xie L., Zhuang W., Hua L. Ultrastrong gradient nanostructured CSS-42L bearing steel and its enhanced wear resistance at elevated temperature. Surface and Coatings Technology. 2023. Vol. 470. Article 129881. DOI: https://doi.org/10.1016/j.surfcoat.2023.129881
Muigai M. N., Akinlabi E. T., Mwema F. M. Influence of direct current (DC) on hardness of weld stainless steel coating–A model for mild steel repair. Materials Today: Proceedings. 2021. Vol. 44. P. 1133–1135. DOI: https://doi.org/10.1016/j.matpr.2020.11.230
Ye H., Chen A., Liu S., Zhang C., Gao Y., Li Q., Guo H. Effect of ultrasonic surface rolling process on the surface properties of QAl10-3-1.5 aluminum bronze alloy. Surface and Coatings Technology. 2022. Vol. 433. Article 128126. DOI: https://doi.org/10.1016/j.surfcoat.2022.128126
Huang P., Wang Y., Lin J., Cheng Y., Liu F., Qiu Q. Effect of ultrasonic rolling on surface integrity, machining accuracy, and tribological performance of bearing steels under different process schemes. CIRP Journal of Manufacturing Science and Technology. 2023. Vol. 43. P. 143–157. DOI: https://doi.org/10.1016/j.cirpj.2023.03.003
Yin F., Wang Y., Ji H., Ma Z., Nie S. Impact of Sliding Speed on the Tribological Behaviors of Cermet and Steel Balls Sliding Against SiC Lubricated with Seawater. Tribology Letters. 2021. Vol. 69. Article 39. DOI: https://doi.org/10.1007/s11249-021-01413-1
Рибалко І М., Тіхонов О В., Захаров А В., Гончаренко О О. Модифікування реноваційних покриттів для підвищення зносостійкості культиваторних лап. Вісник Херсонського національного технічного університету. 2022. № 4(83). С. 37–42. DOI: https://doi.org/10.35546/kntu2078-4481.2022.4.4
Тіхонов О В., Рибалко І М., Гончаренко О О., Івченко Р. Розробка технології відновлення хвостової частини корпусу різця дорожньої фрези. Гірничі, будівельні, дорожні та меліоративні машини. 2024. № 103. С. 64–70. DOI: https://doi.org/10.32347/gbdmm.2024.103.0401







