ENERGY EFFICIENCY OF SHIPS AS A TOOL FOR REDUCING EMISSIONS: CURRENT PRACTICES, INTERNATIONAL AND NATIONAL CHALLENGES

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.3.1.30

Keywords:

IMO strategies, harmful emissions, energy efficiency, inland navigation, fuel efficiency, 3-D printing

Abstract

The article provides a comprehensive analysis of existing strategies and technologies for reducing emissions in shipping, in particular in the context of Ukrainian domestic shipping. The study covers a wide range of issues from international initiatives to national peculiarities of energy efficiency solutions implementation. The problem of assessing the energy efficiency of inland navigation in Ukraine is considered, IMO strategies and the realities of inland waterways are analyzed. Particular attention is paid to the Central Commission for Navigation on the Rhine’s roadmap for reducing emissions, which offers a multi-stage approach to reducing harmful substances in the air. The importance of improving ship energy efficiency technologies, introducing new fuels and changing management strategies in the industry is emphasized. Technical solutions are analyzed in detail, including the use of emulsified fuel, which combines water and heavy marine fuel and provides cleaner combustion, reducing NOₓ emissions by up to 30 %. The prospects of biodiesel blends are being investigated, in particular the B20 blend, which reduces CO emissions by 19 % and CH emissions by 25 %. Optimization of speed and fuel ratio is considered as an effective way to minimize the carbon footprint through mathematical modeling of optimal route parameters and engine power. A special place is given to the analysis of energy efficiency indices, such as EEDI and EEOI, which are key tools for assessing and controlling CO2 emissions. The EEDI is calculated based on the ship’s design characteristics and stimulates the introduction of energy-efficient technologies in design, while the EEOI provides information on the actual efficiency of the ship during operation. Considerable attention is paid to the role of international cooperation platforms, such as PLATINA 3, Waterborne Technology Platform (WTP), European Maritime Safety Agency (EMSA), The Clean Shipping Coalition (CSC), which bring together public, private and research organizations to create an environmentally sustainable shipping environment. An innovative approach is to analyze the impact of additive technologies, in particular 3D printing, on the energy efficiency of ships. The possibilities of using 3D printing to manufacture components ranging from small parts to large elements, including propellers and hull sections, are considered. Particular attention is paid to the problems of surface roughness and dimensional accuracy, which affect the mechanical properties and performance of parts. Ukrainian scientific developments in the field of energy efficiency of shipping are analyzed, including new approaches to the formation of an energy efficiency index for large caravans on the Danube and practical results of shipping companies. The results of the analysis can be useful for scientists and experts in the field of inland navigation to develop effective strategies and policies to reduce greenhouse gas emissions and improve energy efficiency of ships, as well as to integrate Ukraine into international environmental shipping policy.

References

Central Commission for the Navigation of the Rhine (CCNR). CCNR Roadmap for reducing inland navigation emissions [Електронний ресурс]. Strasbourg Cedex: CCNR, 2022. 75 p. URL: https://www.ccr-zkr.org/files/documents/Roadmap/Roadmap_en.pdf (дата звернення: 04.08.2025).

Lee T., Cho J., Lee J. Mixing properties of emulsified fuel oil from mixing marine bunker-c fuel oil and water [Електронний ресурс]. Journal of Marine Science and Engineering. 2022. Vol. 10, No. 11. P. 1610. DOI: https://doi.org/10.3390/jmse10111610

Bach H., Hansen T. IMO off course for decarbonization of shipping? Three challenges for stricter policy [Електронний ресурс]. Marine Policy. 2023. Vol. 147. P. 105379. DOI: https://doi.org/10.1016/j.marpol.2022.105379

Zhang Y., Liu Y., Wang J., Li C. Effects of different biodiesel-diesel blend fuel on combustion and emission characteristics of a diesel engine [Електронний ресурс]. Processes. 2021. Vol. 9, No. 11. P. 1984. DOI: https://doi.org/10.3390/pr9111984

Shih Y-C., Chang S.-L., Huang Y.-H., Lin C.-T. Speed and fuel ratio optimization for a dual-fuel ship to minimize its carbon emissions and cost [Електронний ресурс]. Journal of Marine Science and Engineering. 2023. Vol. 11, No. 4. P. 758. DOI: https://doi.org/10.3390/jmse11040758

Faber J. та ін. Fourth IMO GHG Study. MEPC 75/7/15 [Електронний ресурс]. London: International Maritime Organization, 2020. 524 p. URL: https://greenvoyage2050.imo.org/wp-content/uploads/2021/07/Fourth-IMO-GHGStudy- 2020-Full-report-and-annexes_compressed.pdf

Suvorov P. S., Tarasenko T. V., Zalozh V. I. Restrictive factors in the evaluation of the inland pushers’ energy efficiency with heavy convoys [Електронний ресурс]. Automation of Ship Technical Facilities. 2020. Vol. 26, No. 1. P. 94–109. DOI: https://doi.org/10.31653/1819-3293-2020-1-26-94-109

Суворов П. С., Тарасенко Т. В., Залож В. І. Деякі питання оцінки енергоефективності суден в умовах енергетичного переходу у внутрішньому судноплавстві. Двигуни внутрішнього згоряння. Розділ Загальні проблеми двигунобудування. 2023. № 2. URL: http://dvs.khpi.edu.ua/article/view/287480

Головань А. І. Особливості оцінювання ефективності систем технічного обслуговування вантажних суден. Системи управління, навігації та зв’язку. 2024. Т. 1, № 75. DOI: https://doi.org/10.26906/SUNZ.2024.1.005

Kalinichenko Y., Tomchakovsky G., Oberto Santana L. Increasing energy efficiency by improving navigation methods. Technology Transfer: Fundamental Principles and Innovative Technical Solutions. 2024. P. 11–14. DOI: https://doi.org/10.21303/2585-6847.2024.003567 (дата звернення: 24.05.2025).

Пізінцалі Л. В., Россомаха О. І., Шумило О. М., Александровська Н. І., Россомаха О.А. Аналіз впливу альтернативних видів палива на вартість життєвого циклу судна. Збірник наукових праць Національного університету кораблебудування імені адмірала Макарова. 2023. № 1(490). С. 11–19. URL: http://znp.nuos.mk.ua/archives/2023/1/3.pdf

Александровська Н. І., Пізінцалі Л. В., Россомаха О. І., Россомаха О. А. Аналіз впливу шорсткості гребного гвинта на витрати суднового палива. Збірник наукових праць НУК ім. адмірала Макарова. 2023. № 4(493). С. 3–12. DOI: https://doi.org/10.15589/znp2023.4(493).1

Мельник О. М. Оцінка впливу енергоефективності на безпеку експлуатації судна. Подільський вісник: сільське господарство, техніка, економіка. 2023. № 2(39). DOI: https://doi.org/10.37406/2706-9052-2023-2.11

Россомаха О. І., Александровська Н. І., Пізінцалі Л. В., Россомаха О. А., Рабоча Т. В. Використання діаграми Ісікави при аналізі впливу шорсткості корпусу судна на витрати суднового палива. Наука і техніка сьогодні. Серія «Техніка». 2024. № 1(29). С. 763–785. DOI: https://doi.org/10.52058/2786-6025-2024-1(29)-763-785

Українське Дунайське пароплавство зменшило норму витрат палива для п… [Електронний ресурс]. URL: https://ukrport.org.ua/%D1%83%D0%B4%D0%BF-%D0%B7%D0%BC%D0%B5%D0%BD%D1%88%D0%B8%D0%BB%D0%BE-%D0%BD%D0%BE%D1%80%D0%BC%D1%83-%D0%B2%D0%B8%D1%82%D1%80%D0%B0%D1%82-%D0%BF/

Indian Register of Shipping. Implementing Energy Efficiency Design Index (EEDI) [Електронний ресурс]. Mumbai, 2022. 13 p. URL: https://www.irclass.org/media/2368/energy-efficiency-design-index.pdf

Transport & Environment. Energy Efficiency of Ships: what are we talking about? [Електронний ресурс]. URL: https://www.transportenvironment.org/articles/energy-efficiency-ships-what-are-we-talking-about

IMO. 2018 Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships: Resolution MEPC.308(73) [Електронний ресурс]. URL: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.308(73).pdf

IMO. 2022 Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships: Resolution MEPC.364(79) [Електронний ресурс]. URL: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.364(79).pdf

Pauli G., Ley J. Energy Efficiency Indices for carbon foot printing and as instrument for CO2-emission reduction of inland vessels [Електронний ресурс]. Berlin: Federal Ministry of Transport and Digital Infrastructure, 2022. 31 p. URL: https://platina3.eu/download/gernot-paulii-and-jens-ley-on-energy-efficiency-indices-as-an-instrument-forthe-reduction-of-co2-emissions-of-inland-vessels/?ind=0

PLATINA 3. Platform for the implementation of a future inland navigation action programme [Електронний ресурс]. URL: https://platina3.eu/download/5th-stage-all-presentations-and-agenda/

Waterborne Technology Platform [Електронний ресурс]. URL: https://www.waterborne.eu/

European Maritime Safety Agency (EMSA) [Електронний ресурс]. URL: https://www.emsa.europa.eu/

Clean Shipping Coalition [Електронний ресурс]. URL: https://cleanshipping.org/

Naval Group. 3D-printed propeller: the world’s first with class approval [Електронний ресурс]. Paris, 2017. URL: https://www.3dnatives.com/de/ramlab-051220175/

HII Newport News Shipbuilding. 3D printing of a valve manifold for USS Enterprise [Електронний ресурс]. 2018. URL: https://www.3d-grenzenlos.de/magazin/3d-objekte/newport-news-shipbuilding-setzt-auf-3d-druck-271153043/

INTERNATIONAL STANDARD ISO 25178-2. iTeh Standards [Електронний ресурс]. URL: https://cdn.standards.iteh.ai/samples/46065/020e133c24d648119d70b0e3f3239233/ISO-25178-1-2016.pdf

ASTM F42 Committee on Additive Manufacturing Technologies. Standards for Additive Manufacturing [Електронний ресурс]. ASTM International, 2020. URL: https://www.astm.org/

Published

2025-11-28