MODERN ELECTRICITY MONITORING AND ACCOUNTING SYSTEMS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.1.31Keywords:
automated monitoring systems, electricity metering, digital transformation, automated electricity monitoring and metering system, Smart Metering, intelligent meters, artificial intelligenceAbstract
This paper presents a comprehensive analysis of modern automated electricity monitoring and accounting systems, considering them as a key tool for digital transformation. The relevance of the study is due to the increasing cost of energy resources, increasing environmental requirements and the need to increase operational efficiency. The central element of the analysis is a detailed consideration of the multi-level architecture of modern accounting systems (ASKOE, Smart Metering), which provides flexibility and scalability of solutions. At the lower, measuring level, smart meters and sensors perform primary data collection. The middle, communication level, functions as a “nervous system”, aggregating data through industrial controllers and hubs. The upper, server level, is the “brain” of the system, where information is stored and processed. Finally, the analytical level provides users with tools for visualization, analysis and making informed management decisions. The article pays special attention to communication technologies, which are the basis for reliable and secure two-way data exchange. It is emphasized that there is no single universal solution, therefore, in practice, a hybrid approach is often used that combines different technologies. Wired technologies, in particular PLC (Power Line Communication), which uses existing power lines for data transmission, which significantly reduces the cost of deploying mass systems, especially in the residential sector. Wireless technologies, such as GSM/GPRS/LTE cellular networks (for remote sites and large consumers) and ZigBee and LoRaWAN local area radio networks, which are ideally suited for the “Internet of Things” (IoT) due to their low power consumption and the ability to create self-healing mesh networks. Promising development directions are associated with the integration of artificial intelligence for predictive analysis, the use of digital twins and the transition to the concept of Smart Energy Management, which will determine the future of energy efficiency.
References
ISO 50001:2018. Energy management systems – Requirements with guidance for use. International Organization for Standardization, 2018. 36 p.
ДСТУ EN 62053-21:2017. Прилади для вимірювання електричної енергії (стаціонарні прилади) класів точності 1 і 2. [Чинний від 01.07.2019]. К.: ДП «УкрНДНЦ», 2017.
Мазур І. І., Остроух А. В., Кондратюк Д. М. Системи енергоменеджменту: сучасні підходи та інструменти // Вісник НТУУ «КПІ». Серія: Енергетика. 2021. № 2. С. 22–29.
Бурмістров С. Ю. Автоматизовані системи комерційного обліку електроенергії (АСКОЕ): технології та досвід впровадження // Електротехніка і електромеханіка. 2020. № 4. С. 14–19.
Гаврилюк В. М., Черненко О. О. Енергетичний аудит та енергоефективність підприємств: монографія. Київ : НТУУ «КПІ», 2019. 164 с.
Козлов В. А. Технології SCADA в енергетиці: огляд можливостей // Електротехніка і автоматизація. 2022. № 1. С. 40–45.
Поліщук, В. Й. Аналіз комунікаційних технологій для Smart Metering в умовах міських агломерацій / В. Й. Поліщук, О. В. Мороз // Технічна електродинаміка. Тематичний випуск «Проблеми сучасної електроенергетики». 2019. Частина 3. С. 102–106.
Singh, S., & Singh, J. (2018). Artificial intelligence in smart grid: A review. Journal of Cleaner Production, 172, 481–494.
Galli, S., Scaglione, A., & Wang, Z. (2011). For the grid and through the grid: the role of power line communications in the smart grid. Proceedings of the IEEE, 99(6), 998–1027.







